首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2006年   1篇
  1998年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有22条查询结果,搜索用时 250 毫秒
1.
A series of pentameric “Polyamide Amino Acids” (PAAs) compounds derived from the same trimeric precursor have been synthesized and investigated as HIV TAR RNA ligands, in the absence and in the presence of a Tat fragment. All PAAs bind TAR with similar sub-micromolar affinities but their ability to compete efficiently with the Tat fragment strongly differs, IC50 ranging from 35 nM to >2 μM. While NMR and CD studies reveal that all PAA interact with TAR at the same site and induce globally the same RNA conformational change upon binding, a comparative thermodynamic study of PAA/TAR equilibria highlights distinct TAR binding modes for Tat competitor and non-competitor PAAs. This led us to suggest two distinct interaction modes that have been further validated by molecular modeling studies. While the binding of Tat competitor PAAs induces a contraction at the TAR bulge region, the binding of non-competitor ones widens it. This could account for the distinct PAA ability to compete with Tat fragment. Our work illustrates how comparative thermodynamic studies of a series of RNA ligands of same chemical family are of value for understanding their binding modes and for rationalizing structure-activity relationships.  相似文献   
2.
3.
Inflammatory reactions involve a network of chemical and molecular signals that initiate and maintain host response. In inflamed tissue, immune system cells generate opioid peptides that contribute to potent analgesia by acting on specific peripheral sensory neurons. In this study, we show that opioids also modulate immune cell function in vitro and in vivo. By binding to its specific receptor, the opioid receptor-specific ligand DPDPE triggers monocyte adhesion. Integrins have a key role in this process, as adhesion is abrogated in cells treated with specific neutralizing anti-alpha5beta1 integrin mAb. We found that DPDPE-triggered monocyte adhesion requires PI3Kgamma activation and involves Src kinases, the guanine nucleotide exchange factor Vav-1, and the small GTPase Rac1. DPDPE also induces adhesion of pertussis toxin-treated cells, indicating involvement of G proteins other than Gi. These data show that opioids have important implications in regulating leukocyte trafficking, adding a new function to their known effects as immune response modulators.  相似文献   
4.
5.
6.
Pollinator‐mediated selection toward larger and abundant flowers is common in naturally pollen‐limited populations. However, floral antagonists may counteract this effect, maintaining smaller‐ and few‐flowered individuals within populations. We quantified pollinator and antagonist visit rates and determined a multiplicative female fitness component from attacked and non‐attacked flowers of the Brazilian hummingbird‐pollinated shrub Collaea cipoensis to determine the selective effects of pollinators and floral antagonists on flower size and number. We predicted that floral antagonists reduce the female fitness component and thus exert negative selective pressures on flower size and number, counteracting the positive effects of pollinators. Pollinators, mainly hummingbirds, comprised 4% of total floral visitation, whereas antagonist ants and bees accounted for 90% of visitation. Nectar‐robbers involved about 99% of floral antagonist visit rates, whereas florivores comprised the remaining 1%. Larger and abundant flowers increased both pollinator and antagonist visit rates and the female fitness component significantly decreased in flowers attacked by nectar‐robbers and florivores in comparison to non‐attacked flowers. We detected that pollinators favored larger‐ and many‐flowered individuals, whereas floral antagonists exerted negative selection on flower size and number. This study confirms that floral antagonists reduce female plant fitness and this pattern directly exerts negative selective pressures on flower size and number, counteracting pollinator‐mediated selection on floral attractiveness traits.  相似文献   
7.
Aims Larger corollas receive more pollinator visits but involve higher production and maintenance costs, especially under hot and dry conditions. This can result in indirect costs on reproductive output, which may counteract the effects of pollinator-mediated phenotypic selection on corolla size. In this study, I explored the relationship between corolla size and indirect costs and whether these costs counteract the effects of pollinator-mediated phenotypic selection on this trait in the Mediterranean shrub Halimium atriplicifolium. I hypothesized that (i) corolla production entails direct costs in dry mass, N and P, (ii) corollas entail significant indirect costs in terms of fruit and seed production, (iii) indirect costs increase with corolla size, (iv) this species may suffer pollen limitation to a certain degree and (v) indirect costs counteract the effects of pollinator-mediated selection on corolla size.Methods I compared fruit set and seed production of petal-removed flowers (R flowers) and unmanipulated control flowers (C flowers) and evaluated the influence of individual mean corolla size on relative fruit and seed gain of R compared to C flowers. I also estimated phenotypic selection on corolla size mediated by indirect costs and the combined effect of costs and pollinators (i.e. total selection).Important findings Corollas allocated sizeable amount of resources in terms of dry mass relative to the other floral structures. Fruit set and seed per fruit were significantly higher in R flowers, while individual mean corolla size showed a positive relationship with relative fruit gain. Phenotypic selection analysis revealed cost-mediated negative directional selection and absence of positive directional total selection on corolla size through fruit set. This translated into stabilizing total selection. These results suggest that Mediterranean environments can impose constraints on corolla size, counteracting advantages of larger corollas from the pollination point of view with increased indirect costs of such flowers.  相似文献   
8.
  • In animal‐pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family.
  • We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K‐statistic. Lastly, phylogenetically‐controlled correlational and regression analyses were applied to examine flower size‐based allometry in resource allocation to floral structures.
  • Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger‐flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens.
  • Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male–female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches.
  相似文献   
9.
The precursor for transforming growth factor-alpha (TGF-alpha) is a membrane glycoprotein that can establish contact with epidermal growth factor/TGF-alpha receptors on adjacent cells or can be cleaved to release TGF-alpha that diffuses into the medium. Cleavage of pro-TGF-alpha occurs at Ala/Leu-Ala/Leu-Ala-Val-Val sites located at each end of the mature TGF-alpha sequence. To characterize the cleavage process of pro-TGF-alpha and the role of glycosylation in this process, we have introduced a pro-TGF-alpha expression vector in wild type Chinese hamster ovary (CHO) cells and in the mutant CHO cell clone ldlD that has a reversible defect in protein glycosylation. Analysis of metabolically labeled and cell surface-labeled products immunoprecipitated with antibodies directed against the extracellular TGF-alpha sequence and the cytoplasmic pro-TGF-alpha C-terminal domain shows that cleavage of pro-TGF-alpha in wild type CHO cells occurs in two steps. Both processing steps occur after pro-TGF-alpha reaches the cell surface. In the first step, pro-TGF-alpha rapidly (t1/2 = 30 min) loses the amino-terminal segment that precedes the TGF-alpha sequence. In the second step, pro-TGF-alpha is cleaved at the carboxyl terminus of the TGF-alpha sequence releasing this factor into the medium. This second step is slow (t1/2 = 2 h). The action of pancreatic elastase added to CHO-TGF-alpha cells mimics the first step but not the second one. Synthesis, cell surface exposure, rate of cleavage, and generation of bioactive TGF-alpha in ldlD-TGF-alpha cells are not markedly affected by the lack of N-acetylgalactosamine-dependent protein O-glycosylation or galactose-dependent glycan chain modification. The results indicate that, despite their similarity in amino acid sequence, the two cleavage sites that flank TGF-alpha may be processed with different kinetics which can lead to retention of pro-TGF-alpha on the cell surface.  相似文献   
10.
  • In animal‐pollinated hermaphroditic species, larger and xenogamous flowers increase male‐biased resource allocation, whereas smaller and selfing flowers invest disproportionally more resources to female function. In Cistaceae, an entomophilous and hermaphroditic Mediterranean family, this pattern generally follows a phylogenetic signal. However, resource allocation to carpels is independent of phylogeny, which suggests trait divergences among closely related species during the diversification into different environmental conditions.
  • We tested this hypothesis across 37 species of Cistaceae along a temperature and precipitation gradient, including semiarid, dry, subhumid and humid sites. We quantified the proportions of dry mass and nutrient investment to carpels and tested the influence of the climatic gradient and site‐specific precipitation on the interspecific variation in carpel resource allocation.
  • Lowest and highest percentages of resource allocation to carpels ranged from 1.5–4.2% to 24.2–36.6%, respectively. The proportion of resources comprised in carpels significantly decreased with increasing precipitation/decreasing temperature. Thus, carpels comprised proportionally more resources under drier and hotter conditions, especially in semiarid sites.
  • Our results demonstrate how the extent of climatic constraints is more important than phylogenetic relationships in determining stress‐induced differences in carpel resource allocation across species of Cistaceae in a Mediterranean environment. We suggest that allocation of proportionally more resources to carpels in drier and hotter sites lies within a strategy to deal with the most stressful conditions by means of a high reproductive effort.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号