首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   24篇
  国内免费   1篇
  2022年   1篇
  2021年   6篇
  2018年   3篇
  2017年   7篇
  2016年   8篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   11篇
  2009年   9篇
  2008年   12篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   10篇
  2002年   6篇
  2001年   9篇
  2000年   7篇
  1999年   3篇
  1998年   13篇
  1997年   6篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   7篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
排序方式: 共有222条查询结果,搜索用时 31 毫秒
1.
We have broadly defined the DNA regions regulating esterase6 activity in several life stages and tissue types of D. melanogaster using P- element-mediated transformation of constructs that contain the esterase6 coding region and deletions or substitutions in 5' or 3' flanking DNA. Hemolymph is a conserved ancestral site of EST6 activity in Drosophila and the primary sequences regulating its activity lie between -171 and -25 bp relative to the translation initiation site: deletion of these sequences decrease activity approximately 20-fold. Hemolymph activity is also modulated by four other DNA regions, three of which lie 5' and one of which lies 3' of the coding region. Of these, two have positive and two have negative effects, each of approximately twofold. Esterase6 activity is present also in two male reproductive tract tissues; the ejaculatory bulb, which is another ancestral activity site, and the ejaculatory duct, which is a recently acquired site within the melanogaster species subgroup. Activities in these tissues are at least in part independently regulated: activity in the ejaculatory bulb is conferred by sequences between -273 and -172 bp (threefold decrease when deleted), while activity in the ejaculatory duct is conferred by more distal sequences between -844 and -614 bp (fourfold decrease when deleted). The reproductive tract activity is further modulated by two additional DNA regions, one in 5' DNA (-613 to -284 bp; threefold decrease when deleted) and the other in 3' DNA (+1860 to +2731 bp; threefold decrease when deleted) that probably overlaps the adjacent esteraseP gene. Collating these data with previous studies suggests that expression of EST6 in the ancestral sites is mainly regulated by conserved proximal sequences while more variable distal sequences regulate expression in the acquired ejaculatory duct site.   相似文献   
2.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
3.
Abstract: Substrate utilization of microbial cells extracted from soil with a 0.85% aqueous sodium chloride solution, was determined to estimate effects on soil microorganisms at the community level with microtiter plates (Biolog GN®) containing 95 different sources of organic carbon. A consistent pattern of utilized substrates was obtained after 24 h of microtiter plate incubation at 28°C. The absorbance values (OD590) obtained from a microtiter plate reader after background correction were transformed by using the average absorbance values of oxidized substrates as a threshold to distinguish between well utilized and poorly or non-utilized substrates and thereby reduce variances between replicates. Doubling times of the extracted soil microorganisms in the microtiter plates were tested with 12 substrates and ranged from 1.96 h to 3.23 h, depending on the carbon source. The carbon source utilization assay was used to assess the effects of soil inoculation with Corynebacterium glutamicum with and without a genetically engineered plasmid (pUN1; 6.3 kb), which encoded for the synthesis of the mammalian protease inhibiting peptide, aprotinin. Additionally, aprotinin itself was added at two concentrations to soil samples. An identical decrease in the number of carbon sources utilized, especially carbohydrates, occurred upon soil inoculation with both C. glutamicum strains after inoculation with 106 cells g−1 soil. This effect was only detectable during the first three weeks of incubation, as long as cell numbers of C. glutamicum (pUN1) were above 105 cfu g−1. Soil amendment with aprotinin resulted in utilization of additional substrates, most of them carbohydrates. With 0.1 mg aprotinin g−1 soil this stimulation lasted 2 days and with 10 mg g−1 it lasted for 7 days.  相似文献   
4.
Abstract

Dissociation constants and stoichiometry of binding for interaction of Cellulomonas sp. purine nucleoside phosphorylase with its substrates: inosine/guanosine, orthophosphate, guanine/hypoxanthine and D-ribose-1-phosphate were studied by kinetic and spectrofluorimetric methods.  相似文献   
5.
Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.  相似文献   
6.
Schistosomiasis vector snails are subjected to extreme seasonal changes, particularly in ephemeral rivers and lentic waterbodies. In the tropics, aestivation is one of the adaptive strategies for survival and is used by snails in times of extremely high temperatures and desiccation. Aestivation therefore plays an important role in maintaining the transmission of schistosomiasis. This review assesses the possible impacts of climate change on the temporal and spatial distribution of schistosomiasis-transmitting snails with special emphasis on aestivation, and discusses the effect of schistosome infection on aestivation ability. The impacts of parasite development on snails, as well as physiological changes, are discussed with reference to schistosomiasis transmission. This review shows that schistosome-infected snails have lower survival rates during aestivation, and that those that survive manage to get rid of the infection. In general, snail aestivation ability is poor and survival chances diminish with time. Longer dry periods result in fewer, as well as uninfected, snails. However, the ability of the surviving snails to repopulate the habitats is high.  相似文献   
7.
BackgroundCD19+CD24hiCD38hi transitional immature B-lymphocytes have been demonstrated to play an important role in regulating the alloimmune response in transplant recipients. Here, we analyzed the effect of calcineurin inhibition on these peripherally circulating regulatory B-cells (Breg) in renal transplant recipients receiving cyclosporine A (CsA) or tacrolimus.MethodsPBMCs from healthy subjects (HS) (n = 16) and renal transplant recipients (n = 46) were isolated. Flow cytometry was performed for CD19, CD24, CD38 and IL-10 either after isolation or after 72 hours of co-culture in presence of PMA/Ionomycin and TLR9-ligand in presence or absence of increasing concentrations of tacrolimus or CsA.ResultsThe amount of CD19+ B-cells among lymphocytes was ∼9.1% in HS, ∼3.6% in CsA (n = 11, p<0.05) and ∼6.4% in TAC (n = 35, p<0.05) treated patients. Among B-cells, a distinct subset of Breg was found to be 4.7% in HS, 1.4% in tacrolimus treated patients and almost blunted in patients receiving CsA. Similarily, ∼4% of B-cells in HS and even fewer in CsA or tacrolimus treated patients produced IL-10 (0.5% and 1.5%, p<0.05) and this was confirmed both in non-transplanted CsA-treated healthy subjects and in in vitro co-culture experiments. Among 29 patients with <1% of Breg, 9 cases (31%) displayed an allograft rejection in contrast to only one case of rejection (6%) among 17 patients with >1%.ConclusionCalcineurin inhibitors reduce number and IL-10 production of Bregs in the peripheral circulation of both renal transplant recipients and non-transplanted healthy subjects. CNI induced Breg reduction is not restricted to a solid organ transplant setting and is not mediated by co-medication with steroids or MPA. A low proportion of Breg cells is associated with an elevated frequency of allograft rejection events.  相似文献   
8.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
9.
The gut of the soil microarthropod Folsomia candida provides a habitat for a high density of bacterial cells (T. Thimm, A. Hoffmann, H. Borkott, J. C. Munch, and C. C. Tebbe, Appl. Environ. Microbiol. 64:2660–2669, 1998). We investigated whether these gut bacteria act as recipients for plasmids from Escherichia coli. Filter mating with E. coli donor cells and collected feces of F. candida revealed that the broad-host-range conjugative plasmid pRP4-luc (pRP4 with a luciferase marker gene) transferred to fecal bacteria at estimated frequencies of 5.4 × 10−1 transconjugants per donor. The mobilizable plasmid pSUP104-luc was transferred from the IncQ mobilizing strain E. coli S17-1 and less efficiently from the IncF1 mobilizing strain NM522 but not from the nonmobilizing strain HB101. When S17-1 donor strains were fed to F. candida, transconjugants of pRP4-luc and pSUP104-luc were isolated from feces. Additionally, the narrow-host-range plasmid pSUP202-luc was transferred to indigenous bacteria, which, however, could not maintain this plasmid. Inhibition experiments with nalidixic acid indicated that pRP4-luc plasmid transfer took place in the gut rather than in the feces. A remarkable diversity of transconjugants was isolated in this study: from a total of 264 transconjugants, 15 strains belonging to the alpha, beta, or gamma subclass of the class Proteobacteria were identified by DNA sequencing of the PCR-amplified 16S rRNA genes and substrate utilization assays (Biolog). Except for Alcaligenes faecalis, which was identified by the Biolog assay, none of the isolates was identical to reference strains from data banks. This study indicates the importance of the microarthropod gut for enhanced conjugative gene transfer in soil microbial communities.Gene transfer is a process by which bacterial populations substantially increase their rates of evolution and adaptation (12, 59). Particularly, plasmid-located genes, which are transferred by conjugation from donor to recipient cells, can disseminate rapidly between even phylogenetically different bacterial groups (17, 36, 41) and microbial communities in different spatial habitats (34, 71). Such microbial genetic networks should be considered in risk assessments of releases of genetically engineered microorganisms into the environment (22, 37, 43). The probability and rate of plasmid transfer from a donor to indigenous microorganisms in a given habitat are influenced by plasmid-borne genes which determine the type of transfer mechanism (self-transmissible or mobilizable) and the host range of autonomous plasmid replication. Additionally, specific physicochemical conditions, such as temperature, water potential, and the availability of energy (substrates) for donor and recipient cells, are important factors influencing gene transfer rates in terrestrial and aquatic environments (23, 53, 64).The spread of plasmid-borne genes is still extremely difficult to predict for terrestrial habitats, since a large variety of microhabitat conditions which are not well characterized exists. In bulk soil under laboratory conditions, conjugative gene transfer from recombinant bacterial donor strains to indigenous soil bacteria has been found only under specific selective conditions or on rare occasions (11, 20, 24, 27, 50, 61). Several studies failed to detect such transfer events, and it was concluded that heterogeneity and low densities of recipient cells, as well as a lack of substrates for microbial metabolism, prevented efficient plasmid transfer in bulk soil (19, 49, 54, 75). Plant exudates increased rates of gene transfer in soil (33, 48), and higher rates of gene transfer were found in rhizospheres than in bulk soil (50, 61). It was assumed that other microsites which favor gene transfer in terrestrial habitats are associated with soil invertebrates (74). However, to date little experimental evidence to prove this assumption is available.Intraspecies transconjugants of added Enterobacter cloacae donor and recipient cells could be isolated from microcosm experiments with the variegated cutworm, Peridroma saucia, and plant material (2). The investigators in that study concluded that gene transfer events happened, most likely, in the digestive tracts or in the feces of the insects. Another recent report demonstrated that a conjugative plasmid was transferred between fed Escherichia coli strains in the guts of Rhabditis nematodes (1). Earthworms mediated transport and enhanced plasmid transfer from added donor cells to added recipients and to indigenous bacteria in soil (14, 15). High rates of intraspecies plasmid transfer, comparable to those obtained in pure broth cultures, were detected with Bacillus thuringiensis in infected lepidopterous larvae (31).Microarthropods (collembolans and mites) are the most abundant invertebrate group in the majority of soils (5) but have not been recognized, so far, for their impact on microbial gene transfer. There are some indications that microarthropods harbor a large variety of microorganisms in their guts and thereby contribute to microbial biodiversity in terrestrial environments (7, 9, 57). In the accompanying paper, we have described the gut of Folsomia candida (Collembola) as a habitat and species-specific vector for microorganisms (67). The gut of this soil-dwelling insect, which has a volume of only several nanoliters, was found to be densely colonized, predominantly by rod-shaped bacterial cells. We were interested to know whether such bacterial cells act as recipients for plasmids and thereby promote gene transfer in microbial communities. F. candida feeds, under natural conditions, on bacteria (3), fungal mycelia (6, 66), and nematodes (35). Here, we report on the results of experiments in which plasmid-bearing E. coli strains were fed to F. candida in microcosms. Self-transferable plasmids, as well as mobilizable plasmids with different host ranges, and a nonmobilizable plasmid were included in this study in order to determine the specific capacities of these different classes of plasmids to spread into indigenous bacterial populations. For detection purposes, all plasmids were engineered by the insertion of the luciferase-encoding marker gene luc or lux (30, 47).  相似文献   
10.
Beta-D-galactofuranosidase is a good chemotherapeutic target for the design of inhibitors, since beta-D-galactofuranose is a constituent of important parasite glycoconjugates but is not present in the host mammals. With this aim, we have synthesized for the first time alkyl, benzyl and aryl 1-thio-beta-D-galactofuranosides by condensation of penta-O-benzoyl-alpha,beta-D-galactofuranose with the corresponding thiols, in the presence of SnCl4as catalyst. The complete chemical and spectroscopical characterization of these compounds showed that the reaction was stereoselective. Debenzoylation with sodium methoxide afforded the beta-S-galactofuranosides in high yield. The thioglycosides were tested as inhibitors of the beta-D- galactofuranosidase of Penicillium fellutanum, using for the first time 4-nitrophenyl-beta-D-galactofuranoside as chromogenic substrate. The 4- aminophenyl-1-thio-beta-D-galactofuranoside, obtained by catalytic hydrogenation of the nitrophenyl derivative, was the best inhibitor being then an adequate ligand for the preparation of an affinity phase aimed at the isolation of beta-d-galactofuranosidases from different sources. Also the inhibitory activity of d-galactono-1, 4-lactone was shown.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号