首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   5篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1972年   7篇
  1971年   3篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1966年   3篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
1.
In intact goldfish xanthophores, the phosphorylation of a pigment organelle (carotenoid droplet) protein, p57, appears to play an important role in adrenocorticotropin (ACTH)- or cAMP-induced pigment organelle dispersion while the dephosphorylation of this protein upon withdrawal of ACTH or cAMP is implicated in pigment aggregation. In this paper, we report the cAMP-dependent phosphorylation of this protein in cell-free extracts of xanthophores as determined by the incorporation of 32P from [gamma-32P]ATP. As is the case in intact cells, p57 is the predominant protein phosphorylated in the presence of cAMP. The cAMP-dependent protein kinase which phosphorylates p57 is not bound to the isolated organelles but is found in the soluble portion of the cell extracts. Hence, the phosphorylation of p57 requires the carotenoid droplets bearing the substrate, soluble extract containing the kinase, cAMP (half-maximal activation at 0.5 microM), and Mg2+ (optimal at 5 mM or higher). The presence of protein phosphatase(s) in these extracts was shown indirectly by the stimulation of phosphorylation by fluoride. The phosphorylation of p57 does not appear to require a cell-specific kinase as soluble extracts of goldfish dermal nonpigment cells also phosphorylate p57 associated with isolated carotenoid droplets. Furthermore, using a constant amount of carotenoid droplets, a linear relationship was demonstrated between the rate of p57 phosphorylation and the amount of extract present in the assays. These results suggest that p57 is phosphorylated directly by a cAMP-dependent protein kinase and that the activity of this enzyme is important in regulating the intracellular movement of the pigment organelles of the xanthophore.  相似文献   
2.
3.
We have previously shown that the dispersion and aggregation of carotenoid droplets in goldfish xanthophores are regulated, respectively, by phosphorylation and dephosphorylation of a carotenoid droplet protein p57. There is a basal level of p57 phosphorylation of p57 in unstimulated cells, which is greatly stimulated by adrenocorticotropic hormone (ACTH) or cyclic adenosine monophosphate (cAMP) acting via cAMP-dependent protein kinase. We have also observed that, in permeabilized xanthophores, pigment dispersion can be induced when cAMP is replaced by fluoride. Since p57 has multiple phosphorylation sites, there is the question of whether all p57 phosphorylation is by cAMP-dependent protein kinase or whether phosphorylation by cAMP-independent protein kinase coupled with inhibition of phosphatase activity by fluoride can replace cAMP-dependent protein kinase and that the ability of fluoride to replace cAMP for pigment dispersion in permeabilized cells is probably due to activation of adenylcyclase. We also show that ACTH causes an approximately threefold increase in the level of cAMP in these cells.  相似文献   
4.
Summary The hormone-induced pigment dispersion in primary cultures of xanthophores of goldfish (Carassius auratus L.) has been shown to involve the dispersion of not only carotenoid droplets but also of smooth endoplasmic reticulum. The dispersion of these organelles is inhibited by cytochalasin B and is accompanied by thinning of the cell body, thickening of the processes, and also overall changes in cellular morphology (process extension) under certain conditions. Electron microscopic examination of heavy meromyosin treated glycerinated xanthophores in scales revealed the presence of actin filaments in these cells.This work was supported, in part, by grants AM-5384 and AM-13724 from U.S.P.H.S.  相似文献   
5.
Summary Biochemical and ultrastructural studies indicate that the atrophy of adrenal cortex in hypoyhysectomized rats involves the following changes: (1) One to two days after hypophysectomy, there is loss of template activity resulting from cumulative DNA-damage and heterochromatinization.In vivo ACTH-administration led to recuperation of these cells, indicating damage during hypophysectomized state to be reversible. (2) If the duration of hypophysectomy is prolonged, some of the cells become irreversibly damaged and can no longer recuperate afterin vivo ACTH administration. (3) The period of most rapid cell death is from the third to seventh day after hypophysectomy. The cause of cell death is probably due to membrane damage in the absence of protein synthesis, leading to lysis of the cells. Lysozomes and macrophages are apparently not involved.Supported by U.S.P.H.S. grants AM-5384 and AM-13724 and taken in part from dissertations submitted by Chan and by Mostafapour to Wayne State University in partial fulfillment towards the Ph.D. degree.An invited article.  相似文献   
6.
Lysis of Escherichia coli from without by excess of phage ghost has been shown to give excellent yield of several enzymes. The application of lysis from without to a continuous determination of enzymes in growing cultures of E. coli is illustrated with β-galactosidase. This application can be used in studies on changes of a large number of enzymes during metabolic perturbation (induction, repression, etc.) of growing cultures of E. coli.  相似文献   
7.
Stage 14 (Gallien and Durocher, 1957)Pleurodeles waltlii embryos were treated with α- or β-melanophore-stimulating hormone (MSH), ACTH, dbc-AMP, c-AMP plus theophylline, theophylline, 5′-AMP, or 2′,3′-AMP. The development of melanophores was accelerated (appearing two stages earlier than in control embryos) by α- or β-MSH, ACTH, dbc-AMP, c-AMP plus theophylline, or theophylline alone. By the time embryos developed to stage 28, the control and treated embryos were indistinguishable in the number, distribution, and general morphology of their melanophores, suggesting these agents do not induce melanophore formation or mitosis. Cyclic AMP alone, 5′-AMP or 2′,3′-AMP were ineffective. Accelerated cytodifferentiation apparently requires preinduction by the invaginating chordo-mesoderm during stages 13 and 14 as presumptive neural plate explants cultured before chordo-mesoderm induction (stage 8) failed to produce melanophores with or without α-MSH or dbc-AMP. Explants from stage 14 embryos treated with α-MSH or dbc-AMP developed the same number of melanophores at the approximate time that treated whole embryos developed melanophores. Whole embryo experiments involving the faster developing embryos of Xenopus laevis were similar to those described for P. waltlii.  相似文献   
8.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   
9.
Treatment of goldfish xanthophores with adrenocorticotropin (ACTH) or cyclic AMP (cAMP) induces the centrifugal movement of their pigment organelles from the center of the cells. Using purified xanthophores pulse labeled with 32Pi, we have shown that the dispersion of the organelles is accompanied by the phosphorylation of a pair of polypeptides, termed p57. After fractionation on sucrose gradients, nearly all of the p57 is found associated with the pigment organelles. The phosphorylation induced by ACTH or cAMP apparently occurs at multiple sites on p57. The minimal effective doses of ACTH or cAMP required to induce full pigment dispersion also fully stimulate the phosphorylation of p57. Increased phosphorylation of p57 is detectable within a minute after stimulating the cells and appears to be near completion during the early phases of pigment dispersion. Upon withdrawal of ACTH, these events are reversed; the pigment organelles reaggregate toward the center of the cells and p57 is dephosphorylated. Again, dephosphorylation commences soon after ACTH is withdrawn and is complete before the organelles have completely reaggregated. These results suggest a novel mechanism for governing the movement of these organelles which acts on the organelles themselves through the phosphorylation and dephosphorylation of p57.  相似文献   
10.
Using a goldfish-derived melanized cell line, we attempted to determine the identity of the signal transduction system/second messenger for epinephrine-induced aggregation of melanosomes in a goldfish cell line. The results show that the second messenger is unknown. It is not 1) influx of extracellular calcium, 2) release of intracellular stored calcium via the phosphoinositide pathway, 3) cGMP, or 4) decrease of cAMP. These results suggest that there is an unknown second messenger for this activity of epinephrine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号