首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 250 毫秒
1
1.

Background

Xylopia aethiopica, a plant found throughout West Africa, has both nutritional and medicinal uses. The present study aims to characterize the effects of extracts of this plant on cancer cells.

Results

We report that X. aethiopica extract prepared with 70% ethanol has antiproliferative activity against a panel of cancer cell lines. The IC50 was estimated at 12 ??g/ml against HCT116 colon cancer cells, 7.5 ??g/ml and > 25 ??g/ml against U937 and KG1a leukemia cells, respectively. Upon fractionation of the extract by HPLC, the active fraction induced DNA damage, cell cycle arrest in G1 phase and apoptotic cell death. By using NMR and mass spectrometry, we determined the structure of the active natural product in the HPLC fraction as ent-15-oxokaur-16-en-19-oic acid.

Conclusion

The main cytotoxic and DNA-damaging compound in ethanolic extracts of Xylopia aethiopica is ent-15-oxokaur-16-en-19-oic acid.  相似文献   
2.
Several enteric microsporidia species have been detected in humans and other vertebrates and their identifications at the genotype level are currently being elucidated. As advanced methods, reagents, and disposal kits for detecting and identifying pathogens become commercially available, it is important to test them in settings other than in laboratories with “state‐of‐the‐art” equipment and well‐trained staff members. In the present study, we sought to detect microsporidia DNA preserved and extracted from FTA (fast technology analysis) cards spotted with human fecal suspensions obtained from Cameroonian volunteers living in the capital city of Yaoundé to preclude the need for employing spore‐concentrating protocols. Further, we tested whether amplicon nucleotide sequencing approaches could be used on small aliquots taken from the cards to elucidate the diversity of microsporidia species and strains infecting native residents. Of 196 samples analyzed, 12 (6.1%) were positive for microsporidia DNA; Enterocytozoon bieneusi (Type IV and KIN‐1), Encephalitozoon cuniculi, and Encephalitozoon intestinalis were identified. These data demonstrate the utility of the FTA cards in identifying genotypes of microsporidia DNA in human fecal samples that may be applied to field testing for prevalence studies.  相似文献   
3.
To better understand the epidemiology of sleeping sickness in the Central African sub-region, notably the heterogeneity of Human African Trypanosomiasis (HAT) foci, the mobile genetic element PCR (MGE-PCR) technique was used to genotype Trypanosoma brucei s.l. (T. brucei s.l.) isolates from this sub-region. Using a single primer REV B, which detects positional variation of the mobile genetic element RIME, via amplification of flanking regions, MGE-PCR revealed a micro genetic variability between Trypanosoma brucei gambiense (T. b. gambiense) isolates from Central Africa. The technique also revealed the presence of several T. b. gambiense genotypes and allowed the identification of minor and major ubiquitous genotypes in HAT foci. The presence of several T. b. gambiense genotypes in HAT foci may explain the persistence and the resurgence phenomena of the disease and also the epidemic and the endemic status of some Central African sleeping sickness foci. The MGE-PCR technique represents a simple, rapid, and specific method to differentiate Central African T. brucei s.l. isolates.  相似文献   
4.
Tsetse flies were sampled in three villages of the Campo sleeping sickness focus in South Cameroon. The aim of this study was to investigate the flies’ gut bacterial composition using culture-dependent techniques. Out of the 32 flies analyzed (27 Glossina palpalis palpalis, two Glossina pallicera, one Glossina nigrofusca, and two Glossina caliginea), 17 were shown to be inhabited by diverse bacteria belonging to the Proteobacteria, the Firmicutes, or the Bacteroidetes phyla. Phylogenetic analysis based on 16S rRNA gene sequences indicated the presence of 16 bacteria belonging to the genera Acinetobacter (4), Enterobacter (4), Enterococcus (2), Providencia (1), Sphingobacterium (1), Chryseobacterium (1), Lactococcus (1), Staphylococcus (1), and Pseudomonas (1). Using identical bacterial isolation and identification processes, the diversity of the inhabiting bacteria analyzed in tsetse flies sampled in Cameroon was much higher than the diversity found previously in flies collected in Angola. Furthermore, bacterial infection rates differed greatly between the flies from the three sampling areas (Akak, Campo Beach/Ipono, and Mabiogo). Last, the geographic distribution of the different bacteria was highly uneven; two of them identified as Sphingobacterium spp. and Chryseobacterium spp. were only found in Mabiogo. Among the bacteria identified, several are known for their capability to affect the survival of their insect hosts and/or insect vector competence. In some cases, bacteria belonging to a given genus were shown to cluster separately in phylogenetic trees; they could be novel species within their corresponding genus. Therefore, such investigations deserve to be pursued in expanded sampling areas within and outside Cameroon to provide greater insight into the diverse bacteria able to infect tsetse flies given the severe human and animal sickness they transmit.  相似文献   
5.

Background

HIV infection has commonly been found to affect lipid profile and antioxidant defense.

Objectives

To determine the effects of Human Immunodeficiency Virus (HIV) infection and viral subtype on patient’s cholesterol and oxidative stress markers, and determine whether in the absence of Highly Active Antiretroviral Therapy (HAART), these biochemical parameters could be useful in patient’s management and monitoring disease progression in Cameroon. For this purpose, we measured total cholesterol (TC), LDL cholesterol (LDLC), HDL cholesterol (HDLC), total antioxidant ability (TAA), lipid peroxidation indices (LPI), and malondialdehyde (MDA) in HIV negative persons and HIV positive HAART-naïve patients infected with HIV-1 group M subtypes.

Methods

We measured serum TC, LDLC, HDLC, plasma MDA, and TAA concentrations, and calculated LPI indices in 151 HIV-positive HAART-naïve patients and 134 seronegative controls. We also performed gene sequence analysis on samples from 30 patients to determine the effect of viral genotypes on these biochemical parameters. We also determined the correlation between CD4 cell count and the above biochemical parameters.

Results

We obtained the following controls/patients values for TC (1.96±0.54/1. 12±0. 48 g/l), LDLC (0. 67±0. 46/0. 43±0. 36 g/l), HDLC (105. 51±28. 10/46. 54±23. 36 mg/dl) TAA (0. 63±0. 17/0. 16±0. 16 mM), MDA (0. 20±0. 07/0. 41±0. 10 µM) and LPI (0. 34±0. 14/26. 02±74. 40). In each case, the difference between the controls and patients was statistically significant (p<0.05). There was a positive and statistically significant Pearson correlation between CD4 cell count and HDLC (r = +0.272; p<0.01), TAA (r = +0.199; p<0.05) and a negative and statistically significant Pearson correlation between CD4 cell count and LPI (r = −0.166; p<0.05). Pearson correlation between CD4 cell count and TC, CD4cell count and LDLC was positive but not statistically significant while it was negative but not statistically significant with MDA. The different subtypes obtained after sequencing were CRF02_AG (43.3%), CRF01_AE (20%), A1 (23.3%), H (6.7%), and G (6.7%). None of the HIV-1 subtypes significantly influenced the levels of the biochemical parameters, but by grouping them as pure subtypes and circulating recombinant forms (CRFs), the CRF significantly influenced TC levels. TC was significantly lower in patients infected with CRF (0.87±0.27 g/l) compared to patients infected with pure HIV-1 subtypes (1.32±0.68 g/l) (p<0.017). MDA levels were also significantly higher in patients infected with HIV-1CRF01_AE (0.50±0.10 µM), compared to patients infected with CRF02_AG (0. 38±0. 08 µM) (p<0.018).

Conclusion

These results show that HIV infection in Cameroon is associated with significant decrease in TAA, LDLC, HDLC and TC, and increased MDA concentration and LPI indices which seem to be linked to the severity of HIV infection as assessed by CD4 cell count. The data suggests increased oxidative stress and lipid peroxidation in HIV-infected patients in Cameroon, and an influence of CRFs on TC and MDA levels.  相似文献   
6.
In order to better understand the epidemiology of Human and Animal trypanosomiasis that occur together in sleeping sickness foci, a study of prevalences of animal parasites (Trypanosoma vivax, T. congolense "forest type", and T. simiae) infections was conducted on domestic animals to complete the previous work carried on T. brucei gambiense prevalence using the same animal sample. 875 domestic animals, including 307 pigs, 264 goats, 267 sheep and 37 dogs were sampled in the sleeping sickness foci of Bipindi, Campo, Doumé and Fontem in Cameroon. The polymerase chain reaction (PCR) based method was used to identify these trypanosome species. A total of 237 (27.08%) domestic animals were infected by at least one trypanosome species. The prevalence of T. vivax, T. congolense "forest type" and T. simiae were 20.91%, 11.42% and 0.34% respectively. The prevalences of 7 vivax and T. congolense "forest type" differed significantly between the animal species and between the foci (p < 0.0001); however, these two trypanosomes were found in all animal species as well as in all the foci subjected to the study. The high prevalences of 7 vivax and T congolense "forest type" in Bipindi and Fontem-Center indicate their intense transmission in these foci.  相似文献   
7.
A new index for the risk for transmission of human African trypanosomiasis was developed from an earlier index by adding terms for the proportion of tsetse infected with Trypanosoma brucei gambiense group 1 and the contribution of animals to tsetse diet. The validity of the new index was then assessed in the Fontem focus of southwest Cameroon. Averages of 0.66 and 4.85 Glossina palpalis palpalis (Diptera: Glossinidae) were caught per trap/day at the end of one rainy season (November) and the start of the next (April), respectively. Of 1596 tsetse flies examined, 4.7% were positive for Trypanosoma brucei s.l. midgut infections and 0.6% for T. b. gambiense group 1. Among 184 bloodmeals identified, 55.1% were from pigs, 25.2% from humans, 17.6% from wild animals and 1.2% from goats. Of the meals taken from humans, 81.5% were taken at sites distant from pigsties. At the end of the rainy season, catches were low and similar between biotopes distant from and close to pigsties, but the risk for transmission was greatest at sites distant from the sties, suggesting that the presence of pigs reduced the risk to humans. At the beginning of the rainy season, catches of tsetse and risk for transmission were greatest close to the sties. In all seasons, there was a strong correlation between the old and new indices, suggesting that both can be used to estimate the level of transmission, but as the new index is the more comprehensive, it may be more accurate.  相似文献   
8.
To identify Trypanosoma brucei genotypes which are potentially transmitted in a sleeping sickness focus, microsatellite markers were used to characterize T. brucei found in the mid-guts of wild tsetse flies of the Fontem sleeping sickness focus in Cameroon. For this study, two entomological surveys were performed during which 2685 tsetse flies were collected and 1596 (59.2%) were dissected. Microscopic examination revealed 1.19% (19/1596) mid-gut infections with trypanosomes; the PCR method identified 4.7% (75/1596) infections with T. brucei in the mid-guts. Of these 75 trypanosomes identified in the mid-guts, Trypanosoma brucei gambiense represented 0.81% (13/1596) of them, confirming the circulation of human infective parasite in the Fontem focus. Genetic characterization of the 75 T. brucei samples using five microsatellite markers revealed not only multiple T. brucei genotypes (47%), but also single genotypes (53%) in the mid-guts of the wild tsetse flies. These results show that there is a wide range of trypanosome genotypes circulating in the mid-guts of wild tsetse flies from the Fontem sleeping sickness focus. They open new avenues to undertake investigations on the maturation of multiple infections observed in the tsetse fly mid-guts. Such investigations may allow to understand how the multiple infections evolve from the tsetse flies mid-guts to the salivary glands and also to understand the consequence of these evolutions on the dynamic (which genotype is transmitted to mammals) of trypanosomes transmission.  相似文献   
9.
To improve our knowledge on the transmission dynamics of trypanosomes, Trypanosoma brucei was identified in domestic animals of the Fontem sleeping sickness focus of Cameroon and their genetic characterizations were performed using seven polymorphic microsatellite markers. About 397 domestic animals including 225 pigs, 87 goats, 65 sheep and 20 dogs were sampled. The card agglutination test for trypanosomiasis was positive for 254 (63.98%) animals while the parasitological examinations (thin blood film and capillary tube centrifugation) revealed 86 (21.66%) trypanosome infections. The PCR based method revealed 140 (35.26%) infections of trypanosomes of the subgenus Trypanozoon. The genetic characterization of these 140 positive samples revealed 89 different alleles: 82 in pigs, 72 in goat, 60 in sheep and 48 in dog. Whatever the microsatellite marker used, most of positive samples were amplified. However, the sensitivity (percentage of samples amplified for each marker) of these markers varies significantly between them (χ(2) = 120.32; P < 0.0001). This study showed a high level (80.00%) of mixed genotypes as well as a wide range of T. brucei genotypes circulating in domestic animals of the Fontem sleeping sickness focus of Cameroon. This indicates that several T. brucei genotypes can naturally be transmitted simultaneously to tsetse flies during a single blood meal.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号