首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   5篇
  108篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   12篇
  2012年   7篇
  2011年   6篇
  2010年   7篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
The bacteriophage P1 Ref (recombination enhancement function) protein is a RecA-dependent, HNH endonuclease. It can be directed to create targeted double-strand breaks within a displacement loop formed by RecA. The 76 amino acid N-terminal region of Ref is positively charged (25/76 amino acid residues) and inherently unstructured in solution. Our investigation of N-terminal truncation variants shows this region is required for DNA binding, contains a Cys involved in incidental dimerization and is necessary for efficient Ref-mediated DNA cleavage. Specifically, Ref N-terminal truncation variants lacking between 21 and 47 amino acids are more effective RecA-mediated targeting nucleases. We propose a more refined set of options for the Ref-mediated cleavage mechanism, featuring the N-terminal region as an anchor for at least one of the DNA strand cleavage events.  相似文献   
2.
    

Background  

Mater (Maternal Antigen that Embryos Require), also known as Nalp5 (NACHT, leucine rich repeat and PYD containing 5), is an oocyte-specific maternal effect gene required for early embryonic development beyond the two-cell stage in mouse. We previously characterized the bovine orthologue MATER as an oocyte marker gene in cattle, and this gene was recently assigned to a QTL region for reproductive traits.  相似文献   
3.
4.
We have identified a novel 399 bp repetitive DNA element (which we designate beta  ) 9 bp upstream of a seryl-tRNACAG gene in the genome of Candida albicans . There are two copies of the seryl-tRNACAG gene, one on each homologue of chromosome VI, and the beta element is found upstream of one copy of the gene in C. albicans strain 2005E. The beta element is not present upstream of either copy of the seryl-tRNACAG gene in eight other laboratory strains of C. albicans tested, but was detected in this location in several fresh clinical isolates. Southern blot analysis indicated that there are approximately eight copies of the beta element per diploid C. albicans genome and that it is a mobile element, being present on at least two different chromosomes. Three unique genomic DNA clones containing the beta element were isolated from strain 2005E; in each case, a different tRNA gene was found immediately adjacent to the beta element. Three new tRNA genes from C. albicans have thus been identified: tRNAAsp, tRNAAla and tRNAIle. The beta element shows no significant sequence homology to other known prokaryotic or eukaryotic repetitive elements, although an 8 bp repeat at the 3' end of the element is identical to that of the Ty3 retrotransposable element of Saccharomyces cerevisiae . We propose that the beta element is a solo long terminal repeat (LTR) sequence of a Ty3/gypsy-like transposable element in C. albicans that is closely associated with tRNA genes.  相似文献   
5.
    
Proteins that bind DNA are the cause of the majority of impediments to replication fork progression and can lead to subsequent collapse of the replication fork. Failure to deal with fork collapse efficiently leads to mutation or cell death. Several models have been proposed for how a cell processes a stalled or collapsed replication fork; eukaryotes and bacteria are not dissimilar in terms of the general pathways undertaken to deal with these events. This study shows that replication fork regression, the combination of replication fork reversal leading to formation of a Holliday Junction along with exonuclease digestion, is the preferred pathway for dealing with a collapsed fork in Escherichia coli. Direct endo‐nuclease activity at the replication fork was not observed. The protein that had the greatest effect on these fork processing events was the RecQ helicase, while RecG and RuvABC, which have previously been implicated in this process, were found to play a lesser role. Eukaryotic RecQ homologues, BLM and WRN, have also been implicated in processing events following replication fork collapse and may reflect a conserved mechanism. Finally, the SOS response was not induced by the protein‐DNA roadblock under these conditions, so did not affect fork processing.  相似文献   
6.
DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3''-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3''-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA''2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis.  相似文献   
7.
8.
    
The compound (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid was evaluated as a chiral nuclear magnetic resonance (NMR) solvating agent for a series of diamines and bicyclic β‐amino acids. The amine must be protonated for strong association with the crown ether. An advantage of (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid over many other crown ethers is that it undergoes a neutralization reaction with neutral amines to form the protonated species needed for binding. Twelve primary diamines in neutral and protonated forms were evaluated. Diamines with aryl and aliphatic groups were examined. Some are atropisomers with equivalent amine groups. Others have two nonequivalent amine groups. Association equilibria for these systems are complex, given the potential formation of 2:1, 1:1, and 1:2 crown‐amine complexes and given the various charged species in solution for mixtures of the crown ether with the neutral amine. The crown ether produced enantiomeric differentiation in the 1H NMR spectrum of one or more resonances for every diamine substrate. Also, a series of five bicyclic β‐amino acids were examined and (18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid caused enantiomeric differentiation in the 1H NMR spectrum of three or more resonances of each compound. Chirality 27:708–715, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
9.
Cell culture in collagen lattice is known to be a more physiological model than monolayer for studying the regulation of extracellular matrix protein deposition. The synthesis of sulfated glycosaminoglycans (GAG) and dermatan sulfate (DS) proteoglycans by 3 cell strains were studied in confluent monolayers grown on plastic surface, in comparison to fully retracted collagen lattices. Cells were labelled with35S-sulfate, followed by GAG and proteoglycan analysis by cellulose acetate and SDS-polyacrylamide gel electrophoresis, respectively. The 3 cell strains contracted the lattice in a similar way. In monolayer cultures, the major part of GAG was secreted into culture medium whereas in lattice cultures of dermal fibroblasts and osteosarcoma MG-63 cells but not fibrosarcoma HT-1080 cells, a higher proportion of GAGs, including dermatan sulfate, was retained within the lattices. Small DS proteoglycans, decorin and biglycan, were detected in fibroblasts and MG-63 cultures. They were preferentially trapped within the collagen gel. In retracted lattices, decorin had a higher Mr than in monolayer. Biglycan was detected in monolayer and lattice cultures of MG-63 cells but in lattice cultures only in the case of fibroblasts. In this last case, an up regulation of biglycan mRNA steady state level and down regulation of decorin mRNA was observed, in comparison to monolayers, indicating that collagen can modulate the phenotypical expression of small proteoglycan genes.Supported by a fellowship from the Centre National de la Recherche Scientifique  相似文献   
10.
    
The effect of alcohol is known to vary with the time of the day. Although initially it was suggested that this phenomenon may be due to diurnal differences in ethanol metabolism, more recent studies were contradicting. In the present study, we therefore first set out in assessing the diurnal variations in ethanol sensitivity in mice analysing, concurrently, ethanol elimination rates. Ethanol‐induced (3.5 g/kg; intraperitoneal) loss of righting reflex (LORR) duration was thus determined at several Zeitgeber time (ZT) points (ZT5, 11, 17 and 23) in C57BL/6N mice. In parallel, the corresponding ethanol elimination rates were also assessed. The results display the existence of a distinct diurnal rhythm in LORR duration peaking at ZT11, whereas no differences could be observed regarding the elimination rates of alcohol. Successively, we checked the involvement of the clock genes mPer1 and mPer2 in conveying this rhythm in sensitivity, testing LORR and hypothermia at the peak and trough previously observed (ZT5 and ZT11). Per1Brdm1 mice demonstrate a similar diurnal pattern as control mice, with enhanced LORR durations at ZT11. In contrast, Per2Brdm1 mice did not exhibit a temporal variation to the depressant effects of ethanol with respect to LORR, revealing a constant high sensitivity to ethanol. The present study reveals a central role of the mPer2 gene in inhibiting alcohol sensitivity at the beginning of the inactive phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号