首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  2022年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   7篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1981年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
A wasp venom, mastoparan, rapidly increased the cytosolic free Ca2+ concentration ([Ca2+]i) and activated phosphorylase in rat hepatocytes in a concentration-dependent manner. Mastoparan could increase [Ca2+]i even in the absence of extracellular Ca2+, but a larger increase was observed in the presence of extracellular Ca2+. Thus, mastoparan mobilized Ca2+ from intracellular and extracellular Ca2+ stores. It also activated inositol triphosphate (IP3) accumulation, but did not stimulate cAMP production. From these results, we conclude that mastoparan activates rat hepatic glycogenolysis mediated by the accumulation of IP3, which causes an increase of [Ca2+]i but not that mediated by cAMP.  相似文献   
2.
IL-25, IL-33 and TSLP, which are produced predominantly by epithelial cells, can induce production of Th2-type cytokines such as IL-4, IL-5 and/or IL-13 by various types of cells, suggesting their involvement in induction of Th2-type cytokine-associated immune responses. It is known that Th2-type cytokines contribute to host defense against malaria parasite infection in mice. However, the roles of IL-25, IL-33 and TSLP in malaria parasite infection remain unclear. Thus, to elucidate this, we infected wild-type, IL-25?/?, IL-33?/? and TSLP receptor (TSLPR)?/? mice with Plasmodium berghei (P. berghei) ANKA, a murine malaria strain. The expression levels of IL-25, IL-33 and TSLP mRNA were changed in the brain, liver, lung and spleen of wild-type mice after infection, suggesting that these cytokines are involved in host defense against P. berghei ANKA. However, the incidence of parasitemia and survival in the mutant mice were comparable to in the wild-type mice. These findings indicate that IL-25, IL-33 and TSLP are not critical for host defense against P. berghei ANKA.  相似文献   
3.
15-Deoxy-Delta12,14-prostaglandin J2 (15d-Delta12,14-PGJ2) is an endogenous ligand for a nuclear peroxysome proliferator activated receptor-gamma (PPAR). We found novel binding sites of 15d-Delta12,14-PGJ2 in the neuronal plasma membranes of the cerebral cortex. The binding sites of [3H]15d-Delta12,14-PGJ2 were displaced by 15d-Delta12,14-PGJ2 with a half-maximal concentration of 1.6 microM. PGD2 and its metabolites also inhibited the binding of [3H]15d-Delta12,14-PGJ2. Affinities for the novel binding sites were 15d-Delta12,14-PGJ2 > Delta12-PGJ2 > PGJ2 > PGD2. Other eicosanoids and PPAR agonists did not alter the binding of [3H]15d-Delta12,14-PGJ2. In primary cultures of rat cortical neurons, we examined the pathophysiologic roles of the novel binding sites. 15d-Delta12,14-PGJ2 triggered neuronal cell death in a concentration-dependent manner, with a half-maximal concentration of 1.1 microM. The neurotoxic potency of PGD2 and its metabolites was also 15d-Delta12,14-PGJ2 > Delta12-PGJ2 > PGJ2 > PGD2. The morphologic and ultrastructural characteristics of 15d-Delta12,14-PGJ2-induced neuronal cell death were apoptotic, as evidenced by condensed chromatin and fragmented DNA. On the other hand, we detected little neurotoxicity of other eicosanoids and PPAR agonists. In conclusion, we demonstrated that novel binding sites of 15d-Delta12,14-PGJ2 exist in the plasma membrane. The present study suggests that the novel binding sites might be involved in 15d-Delta12,14-PGJ2-induced neuronal apoptosis.  相似文献   
4.
15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) is one of factors contributed to the neurotoxicity of amyloid β (Aβ), a causative protein of Alzheimer's disease. Type 2 receptor for prostaglandin D(2) (DP2) and peroxysome-proliferator activated receptorγ (PPARγ) are identified as the membrane receptor and the nuclear receptor for 15d-PGJ(2), respectively. Previously, we reported that the cytotoxicity of 15d-PGJ(2) was independent of DP2 and PPARγ, and suggested that 15d-PGJ(2) induced apoptosis through the novel specific binding sites of 15d-PGJ(2) different from DP2 and PPARγ. To relate the cytotoxicity of 15d-PGJ(2) to amyloidoses, we performed binding assay [(3)H]15d-PGJ(2) and specified targets for 15d-PGJ(2) associated with cytotoxicity. In the various cell lines, there was a close correlation between the susceptibilities to 15d-PGJ(2) and fibrillar Aβ. Specific binding sites of [(3)H]15d-PGJ(2) were detected in rat cortical neurons and human bronchial smooth muscle cells. When the binding assay was performed in subcellular fractions of neurons, the specific binding sites of [(3)H]15d-PGJ(2) were detected in plasma membrane, nuclear and cytosol, but not in microsome. A proteomic approach was used to identify protein targets for 15d-PGJ(2) in the plasma membrane. By using biotinylated 15d-PGJ(2), eleven proteins were identified as biotin-positive spots and classified into three different functional proteins: glycolytic enzymes (Enolase2, pyruvate kinase M1 (PKM1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)), molecular chaperones (heat shock protein 8 and T-complex protein 1 subunit α), cytoskeletal proteins (Actin β, F-actin-capping protein, Tubulin β and Internexin α). GAPDH, PKM1 and Tubulin β are Aβ-interacting proteins. Thus, the present study suggested that 15d-PGJ(2) plays an important role in amyloidoses not only in the central nervous system but also in the peripheral tissues.  相似文献   
5.
Nippostrongylus brasiliensis (Nb) is one of the most important parasites in studying Th2 immune response of the host, but little is known about its antigenic structures of the excretory-secretory or structural proteins of the parasite. Here we report cloning and characterization of a novel antigenic gene from cDNA library of Nb adult worm by immunoscreening. The positive clone, KLP-Nb, had an open reading frame of 612 bp that encodes a 203-amino-acid protein and was homologous to 'similar to keratins in a glycine-rich region' of Caenorhabditis elegans. Its expression was confirmed by Northern blotting and IgG enzyme-linked immunosorbent assay. This protein seems to be one of the components of cuticle that covers the nematode body.  相似文献   
6.
Pichia pastoris has been used for the production of many recombinant proteins, and many useful mutant strains have been created. However, the efficiency of mutant isolation by gene‐targeting is usually low and the procedure is difficult for those inexperienced in yeast genetics. In order to overcome these issues, we developed a new gene‐disruption system with a rescue gene using an inducible Cre/mutant–loxP system. With only short homology regions, the gene‐disruption cassette of the system replaces its target–gene locus containing a mutation with a compensatory rescue gene. As the cassette contains the AOX1 promoter‐driven Cre gene, when targeted strains are grown on media containing methanol, the DNA fragment, i.e., the marker, rescue and Cre genes, between the mutant‐loxP sequences in the cassette is excised, leaving only the remaining mutant‐loxP sequence in the genome, and consequently a target gene‐disrupted mutant can be isolated. The system was initially validated on ADE2 gene disruption, where the disruption can easily be detected by color‐change of the colonies. Then, the system was applied for knocking‐out URA3 and OCH1 genes, reported to be difficult to accomplish by conventional gene‐targeting methods. All three gene‐disruption cassettes with their rescue genes replaced their target genes, and the Cre/mutant–loxP system worked well to successfully isolate their knock‐out mutants. This study identified a new gene‐disruption system that could be used to effectively and strategically knock out genes of interest, especially whose deletion is detrimental to growth, without using special strains, e.g., deficient in nonhomologous end‐joining, in P. pastoris. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1201–1208, 2017  相似文献   
7.
Most in vitro protein synthesis systems require a supply of GTP for the formation of translation initiation complexes, with two GTP molecules per amino acid needed as an energy source for a peptide elongation reaction. In order to optimize protein synthesis reactions in a continuous‐flow wheat embryo cell‐free system, we have examined the influence of adding GTP and found that the system does not require any supply of GTP. We report here the preparation of a wheat embryo extract from which endogenous GTP was removed by gel filtration, and the influence of adding GTP to the system on protein synthesis reactions. Using Green Fluorescent Protein (GFP) as a reporter, higher levels of production were observed at lower concentrations of GTP, with the optimal level of production obtained with no supply of GTP. A HPLC‐based analysis of the extract and the translation mixture containing only ATP as an energy source revealed that GTP was not detectable in the extract, however, 35 μM of GTP was found in the translation mixture. This result suggests that GTP could be generated from other compounds, such as GDP and GMP, using ATP. A similar experiment with a C‐terminally truncated form of human protein tyrosine phosphatase 1B (hPTP1B1‐320) gave almost the same result. The wheat embryo cell‐free translation system worked most efficiently without exogenous GTP, producing 3.5 mg/mL of translation mixture over a 48‐h period at 26°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
8.
Renal cell carcinoma (RCC) is chemoresistant cancer. Although several clinical trials were conducted to explore effective medications, the chemoresistance of RCC has not yet been conquered. An endogenous ligand for peroxisome proliferator-activated receptor-γ (PPARγ), 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), induces apoptosis in RCC. Here, we examined synergistic effects of several carcinostatics on the anti-tumor activity of 15d-PGJ2 in Caki-2 cell line by MTT assay. A topoisomerase-I inhibitor, camptothecin (CPT), exhibited synergistically toxicity with 15d-PGJ2, but neither 5-fluorouracil nor cisplatin did. The combination of 15d-PGJ2 and a topoisomerase-II inhibitor, doxorubicine, did not cause synergistic cell growth inhibition. The synergistic effect of topoisomerase-I and II inhibitors was not also detected. A PPARγ antagonist, GW9662, did not prevent Caki-2 from undergoing 15d-PGJ2-induced cytotoxicity. The treatment of CPT combined with 15d-PGJ2 activated caspase-3 more than the separate treatment. These results suggest that 15d-PGJ2 exhibited the anti-tumor activity synergistically with CPT independent of topoisomerase-II and PPARγ.  相似文献   
9.
Renal cell carcinoma (RCC) is chemoresistant cancer. Although several clinical trials were conducted to explore effective medications, the chemoresistance of RCC has not yet been conquered. An endogenous ligand for peroxisome proliferator-activated receptor-γ (PPARγ), 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), induces apoptosis in RCC. Here, we examined synergistic effects of several carcinostatics on the anti-tumor activity of 15d-PGJ(2) in Caki-2 cell line by MTT assay. A topoisomerase-I inhibitor, camptothecin (CPT), exhibited synergistically toxicity with 15d-PGJ(2), but neither 5-fluorouracil nor cisplatin did. The combination of 15d-PGJ(2) and a topoisomerase-II inhibitor, doxorubicine, did not cause synergistic cell growth inhibition. The synergistic effect of topoisomerase-I and II inhibitors was not also detected. A PPARγ antagonist, GW9662, did not prevent Caki-2 from undergoing 15d-PGJ(2)-induced cytotoxicity. The treatment of CPT combined with 15d-PGJ(2) activated caspase-3 more than the separate treatment. These results suggest that 15d-PGJ(2) exhibited the anti-tumor activity synergistically with CPT independent of topoisomerase-II and PPARγ.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号