首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   12篇
  269篇
  2023年   1篇
  2022年   2篇
  2021年   12篇
  2020年   4篇
  2019年   5篇
  2018年   13篇
  2017年   6篇
  2016年   8篇
  2015年   9篇
  2014年   16篇
  2013年   19篇
  2012年   32篇
  2011年   12篇
  2010年   10篇
  2009年   9篇
  2008年   22篇
  2007年   12篇
  2006年   12篇
  2005年   13篇
  2004年   3篇
  2003年   11篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1927年   1篇
排序方式: 共有269条查询结果,搜索用时 0 毫秒
1.
2.
The Drosophila discs large tumor suppressor protein, Dlg, is the prototype of a newly discovered family of proteins termed MAGUKs (membrane-associated guanylate kinase homologues). MAGUKs are localized at the membrane-cytoskeleton interface, usually at cell-cell junctions, where they appear to have both structural and signaling roles. They contain several distinct domains, including a modified guanylate kinase domain, an SH3 motif, and one or three copies of the DHR (GLGF/PDZ) domain. Recessive lethal mutations in the discs large tumor suppressor gene interfere with the formation of septate junctions (thought to be the arthropod equivalent of tight junctions) between epithelial cells, and they cause neoplastic overgrowth of imaginal discs, suggesting a role for cell junctions in proliferation control. A homologue of the Dlg protein, named Hdlg, has been isolated from human B lymphocytes. It shows 65-79% identity to Dlg in the different domains, and it binds to the cytoskeletal protein 4.1. Here, we report that the gene for lymphocyte Hdlg, named DLG1, is located at chromosome band 3q29. This finding identifies a novel site for a candidate tumor suppressor on chromosome 3.  相似文献   
3.
The potential of periphyton-based aquaculture in South Asia is under investigation in an extensive research program. This paper is a further analysis of data from four experiments carried out in that framework, to explore periphyton, fish and fertilizer dose effects on water quality. Factor analysis and ANOVA models applied to a data matrix of water quality parameters in ponds with and without artificial substrates (bamboo poles and kanchi sticks), with and without fish (filter feeders catla and rohu, with and without bottom feeder kalbaush), and with a standard or 50% increased fertilizer dose, allowed us to identify the underlying ecological processes governing this novel periphyton-based pond system, and construct conceptual graphic models of the periphyton–environment relationships observed. We clearly established that the phosphorus flow is mainly linked to phytoplankton activity in the water column and decomposition on the pond bottom, while nitrogen flow is mainly linked to autotrophic (photosynthesis) and heterotrophic (decomposition and nitrification) processes that take place in the periphyton in addition to the water column and pond bottom. Consequently, disruption of the pond bottom by bottom feeding fish primarily promoted phosphate cycling and phytoplankton, while periphyton development on the supplied substrates and fertilization mainly improved oxygen balance and nitrogen related processes developing in the water column. The use of bamboo poles led to better results than kanchi sticks, related to the greater autotrophic periphyton development on bamboo and to the larger surface of bamboo poles that facilitate fish grazing and periphyton dislodgment that in turn have a renewal effect on periphyton. Stocking bottom feeding fish produces a fertilizing effect through the food web that benefits the filter-feeding fish and that makes it unnecessary to increase the dose of inorganic and organic fertilizers applied to the ponds. Thus, the output of this analysis will help the fish farmers in resource constrained countries to improve their production in periphyton-based ponds just by choosing bamboo substrates, stocking a bottom feeder fish together with the filter feeders, and saving money on fertilizers.  相似文献   
4.
5.
DNA methylation is dynamically remodelled during the mammalian life cycle through distinct phases of reprogramming and de novo methylation. These events enable the acquisition of cellular potential followed by the maintenance of lineage-restricted cell identity, respectively, a process that defines the life cycle through successive generations. DNA methylation contributes to the epigenetic regulation of many key developmental processes including genomic imprinting, X-inactivation, genome stability and gene regulation. Emerging sequencing technologies have led to recent insights into the dynamic distribution of DNA methylation during development and the role of this epigenetic mark within distinct genomic contexts, such as at promoters, exons or imprinted control regions. Additionally, there is a better understanding of the mechanistic basis of DNA demethylation during epigenetic reprogramming in primordial germ cells and during pre-implantation development. Here, we discuss our current understanding of the developmental roles and dynamics of this key epigenetic system.  相似文献   
6.
Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02–1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75–0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.  相似文献   
7.

Purpose

To develop a superior VAChT imaging probe for SPECT, radiolabeled (-)-OIDV and (+)-OIDV were isolated and investigated for differences in their binding affinity and selectivity to VAChT, as well as their in vivo activities.

Procedures

Radioiodinated o-iodo-trans-decalinvesamicol ([125I]OIDV) has a high binding affinity for vesicular acetylcholine transporter (VAChT) both in vitro and in vivo. Racemic [125I]OIDV was separated into its two optical isomers (-)-[125I]OIDV and (+)-[125I]OIDV by HPLC. To investigate VAChT binding affinity (Ki) of two OIDV isomers, in vitro binding assays were performed. In vivo biodistribution study of each [125I]OIDV isomer in blood, brain regions and major organs of rats was performed at 2,30 and 60 min post-injection. In vivo blocking study were performed to reveal the binding selectivity of two [125I]OIDV isomers to VAChT in vivo. Ex vivo autoradiography were performed to reveal the regional brain distribution of two [125I]OIDV isomers and (-)-[123I]OIDV for SPECT at 60 min postinjection.

Results

VAChT binding affinity (Ki) of (-)-[125I]OIDV and (+)-[125I]OIDV was 22.1 nM and 79.0 nM, respectively. At 2 min post-injection, accumulation of (-)-[125I]OIDV was the same as that of (+)-[125I]OIDV. However, (+)-[125I]OIDV clearance from the brain was faster than (-)-[125I]OIDV. At 30 min post-injection, accumulation of (-)-[125I]OIDV (0.62 ± 0.10%ID/g) was higher than (+)-[125I]OIDV (0.46 ± 0.07%ID/g) in the cortex. Inhibition of OIDV binding showed that (-)-[125I]OIDV was selectively accumulated in regions known to express VAChT in the rat brain, and ex vivo autoradiography further confirmed these results showing similar accumulation of (-)-[125I]OIDV in these regions. Furthermore, (-)-[123I]OIDV for SPECT showed the same regional brain distribution as (-)-[125I]OIDV.

Conclusion

These results suggest that radioiodinated (-)-OIDV may be a potentially useful tool for studying presynaptic cholinergic neurons in the brain.  相似文献   
8.
Like the majority of Columbiformes, the Laughing Dove Spilopelia senegalensis is sexually monomorphic in plumage, but seems to be slightly dimorphic in size. However, due to the lack of studies little is known about the sexual size dimorphism in this species. In this work, we used morphometric data on a sample of 61 Laughing Doves from southern Tunisia, and sexed using a DNA-based method, to assess size differences between males and females and to determine a discriminant function useful for sex identification. The results showed that wing length was the most dimorphic trait, which could be due to the effects of sexual selection. The best function for the discrimination between sexes included wing length and head length, which is comparable with findings on other dove species. This discriminant function accurately classified 89% of birds, providing a rapid and accurate tool for sex identification in the studied population. Further data from different populations are needed for firmer conclusions about the extent of sexual size dimorphism and the reliability of the morphometric sexing approach in this dove species.  相似文献   
9.
10.
CED3 protein, the product of a gene necessary for programmed cell death in the nematode Caenorhabditis elegans, is related to a highly specific cysteine protease family i.e., caspases. A tertiary-structural model has been constructed of a complex of the CED3 protein with tetrapeptide-aldehyde inhibitor, Ac-DEVD-CHO. The conformation of CED3 protein active site and the general binding features of inhibitor residues are similar to those observed in other caspases. The loop segment (Phe380-Pro387) binds with the P4 Asp in a different fashion compared to caspase-3. The comparative modeling of active sites from caspase-3 and CED3 protein indicated that although these enzymes require Asp at the position P4, variation could occur in the binding of this residue at the S4 subsite. This model allowed the definition of substrate specificity of CED3 protein from the structural standpoint and provided insight in designing of mutants for structure-function studies of this classical caspase homologue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号