首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   4篇
  2024年   2篇
  2023年   3篇
  2022年   4篇
  2021年   8篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   14篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1992年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
1.
2.
3.
The nucleobase adenine has previously been reported to activate G protein-coupled receptors in rat and mouse. Adenine receptors (AdeR) thus constitute a new family of purine receptors, for which the designation “P0-receptors” has been suggested. We now describe the cloning and characterization of two new members of the AdeR family from mouse (MrgA10, termed mAde1R) and hamster (cAdeR). Both receptors were expressed in Sf9 insect cells, and radioligand binding studies were performed using [3H]adenine. Specific binding of the radioligand was detected in transfected, but not in untransfected cells, and K D values of 286 nM (mAde1R, B max 1.18 pmol/mg protein) and 301 nM (cAdeR, B max 17.7 pmol/mg protein), respectively, were determined. A series of adenine derivatives was investigated in competition binding assays. Minor structural modifications generally led to a reduction or loss of affinity, with one exception: 2-fluoroadenine was at least as potent as adenine itself at the cAdeR. Structure–activity relationships at all AdeR orthologs and subtypes investigated so far were similar, but not identical. For functional analyses, the cAdeR was homologously expressed in Chinese hamster ovary (CHO) cells, while the mAde1R was heterologously expressed in 1321N1 astrocytoma cells. Like the previously described AdeRs from rat (rAdeR) and mouse (mAde2R), the mAde1R (EC50 9.77 nM) and the cAdeR (EC50 51.6 nM) were coupled to inhibition of adenylate cyclase. In addition, the cAdeR from hamster expressed in CHO cells produced an increase in intracellular calcium concentrations (EC50 6.24 nM) and was found to be additionally coupled to Gq proteins.  相似文献   
4.
Phosphatidylcholine is a constituent of Chlamydia trachomatis membranes that must be acquired from its mammalian host to support bacterial proliferation. The CLA1 (SR‐B1) receptor is a bi‐directional phosphatidylcholine/cholesterol transporter that is recruited to the inclusion of Chlamydia‐infected cells along with ABCA1. C. trachomatis growth was inhibited in a dose‐dependent manner by BLT‐1, a selective inhibitor of CLA1 function. Expression of a BLT‐1‐insensitive CLA1(C384S) mutant ameliorated the effect of the drug on chlamydial growth. CLA1 knockdown using shRNAs corroborated an important role for CLA1 in the growth of C. trachomatis. Trafficking of a fluorescent phosphatidylcholine analogue to Chlamydia was blocked by the inhibition of CLA1 or ABCA1 function, indicating a critical role for these transporters in phosphatidylcholine acquisition by this organism. Our analyses using a dual‐labelled fluorescent phosphatidylcholine analogue and mass spectrometry showed that the phosphatidylcholine associated with isolated Chlamydia was unmodified host phosphatidylcholine. These results indicate that C. trachomatis co‐opts host phospholipid transporters normally used to assemble lipoproteins to acquire host phosphatidylcholine essential for growth.  相似文献   
5.
6.
Salivary gland neoplasms exhibit complex histopathology in a variety of tumor types and treatment options depend largely on the stage of the cancer. Induced pluripotent stem cells (iPS) have been investigated for treating induced salivary gland cancer and for restoring salivary gland function. We investigated iPS treatment for salivary gland cancer both in vitro and in vivo. For our study in vitro, we re-programmed human skin fibroblasts to form iPS cells using a plasmid containing Oct4, Sox2, L-MYC and LIN28. For our study in vivo, we used 30 white male albino rats divided into the following groups of 10: group 1 (control): rats were injected with phosphate-buffered saline (PBS), group 2 induced squamous cell carcinoma (SCC): rat submandibular glands were injected with squamous carcinoma cells (SCC), group 3 (induced SCC/iPS): SCC treated rats treated with 5 × 106 iPS cells. Submandibular glands from rats of all groups were examined histologically and real time PCR was performed for amylase, and COX I and COX II gene expression. We confirmed that submandibular gland specimens included tumor tissue before starting treatment with iPS. iPS treated cases exhibited regeneration of salivary glands, although minor degenerative and vascularization changes remained. The acinar cells regained their proper organization, but continued to exhibit abnormal activity including hyperchromatism. iPS cells may be useful for treating salivary gland carcinomas.  相似文献   
7.
8.
The present study aimed to isolate, select, and evaluate bacterial isolates with potential for use as biological indicators for sterilization with glutaraldehyde and/or formaldehyde. A total of 340 local Bacillus isolates were screened for glutaraldehyde and/or formaldehyde resistance by determination of minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and extinction time and were compared with B. subtilis (var. niger) ATCC 9372, the biological indicator for ethylene oxide sterilization, as reference. Of these, 85 isolates had glutaraldehyde MICs of 0.5% or higher, while 29 had formaldehyde MICs of 0.04% or higher. Of the 29 resistant isolates, 15 had MBCs of 0.05% or more. Extinction times were used to evaluate the bactericidal/sporicidal activity of glutaraldehyde. Eight had inactivation times of more than 5 h in 2% glutaraldehyde (pH 8), whereas 12 had inactivation times of more than 3 h in l% formaldehyde, with one isolate in common. These 19 isolates were selected and evaluated as potential biological indicators for aldehydes by determination of the decimal reduction times (D values), compared with the reference strain. Eight glutaraldehyde-resistant isolates exhibited D values 2.0- to 3.5-fold higher than the reference strain (30 min.). Only five of 12 formaldehyde resistant isolates had D values higher than that of the reference strain. Using six resistant isolates, temperature coefficient values between 2.11 and 3.02 were obtained for 2% formaldehyde. Finally, 14 isolates were tested for potential pathogenicity and were identified to species level. All of the eight glutaraldehyde-resistant isolates, including the isolate with dual resistance, and three formaldehyde-resistant isolates were B. licheniformis, while two other formaldehyde-resistant isolates were B. cereus. Six of the selected B. licheniformis isolates are potential biological indicators for sterilization processes using aldehydes. Three can be suggested for glutaraldehyde only and three for both aldehydes. Electronic Publication  相似文献   
9.
Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing. In the present study, we have explored the biological function of MELK using MELK-T1, a novel and selective small-molecule inhibitor. Strikingly, MELK-T1 triggered a rapid and proteasome-dependent degradation of the MELK protein. Treatment of MCF-7 (Michigan Cancer Foundation-7) breast adenocarcinoma cells with MELK-T1 induced the accumulation of stalled replication forks and double-strand breaks that culminated in a replicative senescence phenotype. This phenotype correlated with a rapid and long-lasting ataxia telangiectasia-mutated (ATM) activation and phosphorylation of checkpoint kinase 2 (CHK2). Furthermore, MELK-T1 induced a strong phosphorylation of p53 (cellular tumour antigen p53), a prolonged up-regulation of p21 (cyclin-dependent kinase inhibitor 1) and a down-regulation of FOXM1 (Forkhead Box M1) target genes. Our data indicate that MELK is a key stimulator of proliferation by its ability to increase the threshold for DNA-damage tolerance (DDT). Thus, targeting MELK by the inhibition of both its catalytic activity and its protein stability might sensitize tumours to DNA-damaging agents or radiation therapy by lowering the DNA-damage threshold.  相似文献   
10.

Stockholm Water Perspectives

2011 Stockholm water prize laureate highlights lake ecosystem dangers and opportunities  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号