首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   41篇
  576篇
  2023年   6篇
  2022年   9篇
  2021年   17篇
  2020年   17篇
  2019年   11篇
  2018年   8篇
  2017年   10篇
  2016年   19篇
  2015年   31篇
  2014年   40篇
  2013年   49篇
  2012年   47篇
  2011年   61篇
  2010年   31篇
  2009年   16篇
  2008年   34篇
  2007年   19篇
  2006年   34篇
  2005年   26篇
  2004年   26篇
  2003年   20篇
  2002年   19篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有576条查询结果,搜索用时 15 毫秒
1.
BackgroundType 2 diabetes (T2DM) is a chronic metabolic disorder. Although therapeutic pharmaceutical agents continue to advance, herbal medicines are potential complementary treatments for the promotion of glucose homeostasis, with minimal adverse effects. Conventionally, ellagic acid (EA) has been utilized for the therapy of a range of pathologies owing to its anti-inflammatory and anti-diabetic actions.ObjectiveThe aim of this study is to determine the activity of EA on serum α-amylase and lipase titers, and on pancreatic tumor necrosis factor-α (TNF-α), proliferating cell nuclear antigen (PCNA) and interleukin-6 (IL-6) concentrations using the streptozocin-induced T2DM rodent model.MethodsEA extract synthesized from fresh strawberry fruit was employed for therapy. 50 adults male Wistar rats were randomized into either control, EA, diabetic, co-treated or post- treated cohorts.ResultsEA diminished fasting blood glucose levels, altered lipase, amylase, IL-6, PCNA and TNF- α expression and enhanced islet cell renewal, insulin, and immunoreactivities.ConclusionInflammatory indicators are elevated in the presence of T2DM. Extract of EA has overall tissue reparative and safeguarding properties, as indicated by the augmented β- cell population and enhanced glucose homeostasis. Thus, EA may be an innovative treatment approach for the maintenance of normoglycemia in individuals with T2DM.  相似文献   
2.
3.
4.
IsoBAs, stereoisomers of primary and secondary BAs, are found in feces and plasma of human individuals. BA signaling via the nuclear receptor FXR is crucial for regulation of hepatic and intestinal physiology/pathophysiology. Aim: Investigate the ability of BA-stereoisomers to bind and modulate FXR under physiological/pathological conditions. Methods: Expression-profiling, luciferase-assays, fluorescence-based coactivator-association assays, administration of (iso)-BAs to WT and cholestatic mice. Results: Compared to CDCA/isoCDCA, administration of DCA/isoDCA, UDCA/isoUDCA only slightly increased mRNA expression of FXR target genes; the induction was more evident looking at pre-mRNAs. Notably, almost 50% of isoBAs were metabolized to 3-oxo-BAs within 4 h in cell-based assays, making it difficult to study their actions. FRET-based real-time monitoring of FXR activity revealed that isoCDCA>CDCA stimulated FXR, and isoDCA and isoUDCA allowed fully activated FXR to be re-stimulated by a second dose of GW4064. In vivo co-administration of a single dose of isoBAs followed by GW4064 cooperatively activated FXR, as did feeding of UDCA in a background of endogenous FXR ligands. However, in animals with biliary obstruction and concomitant loss of intestinal BAs, UDCA was unable to increase intestinal Fgf15. In contrast, mice with an impaired enterohepatic circulation of BAs (Asbt?/?, Ostα?/?), administration of UDCA was still able to induce ileal Fgf15 and repress hepatic BA-synthesis, arguing that UDCA is only effective in the presence of endogenous FXR ligands. Conclusion: Secondary (iso)BAs cooperatively activate FXR in the presence of endogenous BAs, which is important to consider in diseases linked to disturbances in BA enterohepatic cycling.  相似文献   
5.
The current work investigates the capacity of the water primrose (Ludwigia stolinefera) to sequester inorganic and organic nutrients in its biomass to restore eutrophic wetlands, besides its nutritive quality as fodder for animals. The nutrient elements and nutritive value of the water primrose were assessed seasonally in polluted and unpolluted watercourses. The water primrose plants’ highest biomass was attained during summer; then, it was significantly reduced till it reached its lowest value during winter. In the polluted canal, the plant root and shoot accumulated higher contents of all nutrient elements (except Na and Mg) rather than in the unpolluted Nile. They accumulated most investigated nutrients in the growing season during summer. The shoots accumulated higher contents of N, P, Ca, and Mg than the root, which accumulated higher concentrations of Na and K. Therefore, summer season is the ideal time to harvest water primrose for removing the maximum nutrients for restoring eutrophic watercourses. The aboveground tissues had the highest values of ether extract (EE) during spring and the highest crude fibers (CF) and total proteins (TP) during summer. In contrast, the belowground tissues had the lowest EE, CF, and TP during winter. In spring, autumn, and winter seasons, the protein content in the grazeable parts (shoots) of the water primrose was within the range, while in summer, it was higher than the minimum requirement for the maintenance of animals. There was a decrease in crude fibers and total proteins, while an increase in soluble carbohydrates content in the below- and above-ground tissues of water primrose under pollution stress. The total protein, lipids, and crude fibers of the aboveground parts of water primrose support this plant as a rough forage.  相似文献   
6.
OLAP (On-Line Analytical Processing) is an approach to efficiently evaluate multidimensional data for business intelligence applications. OLAP contributes to business decision-making by identifying, extracting, and analyzing multidimensional data. The fundamental structure of OLAP is a data cube that enables users to interactively explore the distinct data dimensions. Processing depends on the complexity of queries, dimensionality, and growing size of the data cube. As data volumes keep on increasing and the demands by business users also increase, higher processing speed than ever is needed, as faster processing means faster decisions and more profit to industry. In this paper, we are proposing an Adaptive Hybrid OLAP Architecture that takes advantage of heterogeneous systems with GPUs and CPUs and leverages their different memory subsystems characteristics to minimize response time. Thus, our approach (a) exploits both types of hardware rather than using the CPU only as a frontend for GPU; (b) uses two different data formats (multidimensional cube and relational cube) to match the GPU and CPU memory access patterns and diverts queries adaptively to the best resource for solving the problem at hand; (c) exploits data locality of multidimensional OLAP on NUMA multicore systems through intelligent thread placement; and (d) guides its adaptation and choices by an architectural model that captures the memory access patterns and the underlying data characteristics. Results show an increase in performance by roughly four folds over the best known related approach. There is also the important economical factor. The proposed hybrid system costs only 10 % more than same system without GPU. With this small extra cost, the added GPU increases query processing by almost 2 times.  相似文献   
7.
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement.  相似文献   
8.
Biological Trace Element Research - The objectives of this study were to investigate the impact of dietary organic mineral mixture (manganese, zinc, and copper) supplementation on reproductive...  相似文献   
9.
During evolution, sponges (Porifera) have honed the genetic toolbox and biosynthetic mechanisms for the fabrication of siliceous skeletal components (spicules). Spicules carry a protein scaffold embedded within biogenic silica (biosilica) and feature an amazing range of optical, structural, and mechanical properties. Thus, it is tempting to explore the low-energy synthetic pathways of spiculogenesis for the fabrication of innovative hybrid materials. In this synthetic biology approach, the uptake of multifunctional nonbiogenic nanoparticles (fluorescent, superparamagnetic) by spicule-forming cells of bioreactor-cultivated sponge primmorphs provides access to spiculogenesis. The ingested nanoparticles were detected within intracellular vesicles resembling silicasomes (silica-rich cellular compartments) and as cytosolic clusters where they lent primmorphs fluorescent/magnetic properties. During spiculogenesis, the nanoparticles initially formed an incomplete layer around juvenile, intracellular spicules. In the mature, extracellular spicules the nanoparticles were densely arranged as a surface layer that rendered the resulting composite fluorescent and magnetic. By branching off the conventional route of solid-state materials synthesis under harsh conditions, a new pathway has been opened to a versatile platform that allows adding functionalities to growing spicules as templates in living cells, using nonbiogenic nanoscale building blocks with multiple functionalities. The magnet-assisted alignment renders this composite with its fluorescent/magnetic properties potentially suitable for application in biooptoelectronics and microelectronics (e.g., microscale on-chip waveguides for applications of optical detection and sensing).  相似文献   
10.

Background

Role of multidrug resistance-1 (MDR-1) gene polymorphisms has not been clarified in nephrotic syndrome (NS). Additionally, researchers studied several genetic polymorphisms to explain their influence on different patients' responses to steroid; however the data were inconsistent. Therefore, we aimed to investigate the association of MDR-1 gene polymorphisms [C1236T, G2677T/A, C3435T] and haplotypes with susceptibility to childhood nephrotic syndrome, and whether they influence steroid response.

Methods

We detected MDR-1 gene polymorphisms using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) in 138 NS patients and 140 age and sex matched healthy children.

Results

The frequencies of MDR1 G2677T/A GT, GA, TT + AA genotypes or T allele, MDR1 C3435T TT genotype, and T allele genotype frequencies were significantly increased in NS group. While no significant differences were observed in distributions of C1236T genotypes or allele between NS patients and healthy children. Moreover, steroid non-responder NS patients had significantly higher frequencies of MDR1 G2677T/A GT, GA, and TT + AA genotypes than steroid responsive NS patients. We observed also that NS patients with age less than 6 years old had increased frequencies of MDR1 G2677T/A GT, GA, TT + AA genotypes or T allele MDR1 C3435T CT, TT genotypes and T allele. Interestingly the frequency of the TGC haplotype of MDR1 was lower in the initial steroid responders than in non-responders NS patients. On the contrary, there were no any association between the MDR1 haplotypes with NS susceptibility and they did not influence renal pathological findings.

Conclusion

Our data suggested that MDR1 C3435T or G2677T/A gene polymorphisms are risk factors of increased susceptibility, earlier onset of NS, and steroid resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号