首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   10篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   10篇
  2017年   3篇
  2016年   7篇
  2015年   7篇
  2014年   10篇
  2013年   14篇
  2012年   16篇
  2011年   19篇
  2010年   13篇
  2009年   6篇
  2008年   18篇
  2007年   16篇
  2006年   15篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1985年   3篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有198条查询结果,搜索用时 31 毫秒
1.
Metal ionophores are considered as potential anti-dementia agents, and some are currently undergoing clinical trials. Many metals are known to accumulate and distribute abnormally in the aging brain. Alterations in zinc metal homeostasis in the glutaminergic synapse could contribute to ageing and the pathophysiology of Alzheimer’s disease (AD). The present study was designed to investigate the effect of metal ionophores on long term administration of zinc in D-galactose induced senescent mice. The ageing model was established by combined administration of zinc and D-galactose to mice for 6 weeks. A novel metal ionophore, PBT-2 was given daily to zinc-induced d-galactose senescent mice. The cognitive behaviour of mice was monitored using the Morris Water Maze. The anti-oxidant status and amyloidogenic activity in the ageing mouse was measured by determining mito-oxidative parameters and deposition of amyloid β (Aβ) in the brain. Systemic administration of both zinc and D-galactose significantly produced memory deficits, mito-oxidative damage, heightened acetylcholinesterase enzymatic activity and deposition of amyloid-β. Treatment with PBT-2 significantly improved behavioural deficits, biochemical profiles, cellular damage, and curbed the deposition of APP in zinc-induced senescent mice. These findings suggest that PBT-2, acting as a metal protein attenuating compound, may be helpful in the prevention of AD or alleviation of ageing.  相似文献   
2.
3.
Journal of Plant Biochemistry and Biotechnology - Pigeonpea, an important legume crop is a good host plant for lac cultivation in North East India. In the present study, sixty-three polymorphic EST...  相似文献   
4.
Over the past decades the role of nitric oxide (NO) and reactive oxygen species (ROS) in signaling and cellular responses to stress has witnessed an exponential trend line. Despite advances in the subject, our knowledge of the role of NO and ROS as regulators of stress and plant growth and their implication in signaling pathways is still partial. The crosstalk between NO and ROS during root formation offers new domains to be explored, as it regulates several plant functions. Previous findings indicate that plants utilize these signaling molecules for regulating physiological responses and development. Depending upon cellular concentration, NO either can stimulate or impede root system architecture (RSA) by modulating enzymes through post-translational modifications. Similarly, the ROS signaling molecule network, in association with other hormonal signaling pathways, control the RSA. The spatial regulation of ROS controls cell growth and ROS determine primary root and act in concert with NO to promote lateral root primordia. NO and ROS are two central messenger molecules which act differentially to upregulate or downregulate the expression of genes pertaining to auxin synthesis and to the configuration of root architecture. The investigation concerning the contribution of donors and inhibitors of NO and ROS can further aid in deciphering their role in root development. With this background, this review provides comprehensive details about the effect and function of NO and ROS in the development of RSA.  相似文献   
5.
Diabetes affects a large population of the world. Lifestyle, obesity, dietary habits, and genetic factors contribute to this metabolic disease. A target pathway to control diabetes is the 5′-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. AMPK is a heterotrimeric protein with α, β, and γ subunits. In several studies, AMPK activation enhanced glucose uptake into cells and inhibited intracellular glucose production. Impairment of AMPK activity is present in diabetes, according to some studies. Drugs used in the treatment of diabetes, such as metformin, are also known to act through regulation of AMPK. Thus, drugs that activate and regulate AMPK are potential candidates for the treatment of diabetes. In addition, many patients encounter important adverse effects, like hypoglycemia, while using allopathic drugs. As a result, the investigation of plant-derived natural drugs that lack adverse side effects and treat diabetes is necessary. Natural products like berberine, quercetin, resveratrol, and so forth have shown significant potential in regulating and activating the AMPK pathway which can lead to manage diabetes mellitus and its complications.  相似文献   
6.
Exposure to long-term hypoxia (LTH) results in altered cortisol responses in the ovine fetus. The present study was designed to test the hypothesis that LTH alters adrenal responsiveness to fetal hypotension. Pregnant ewes were maintained at high altitude (3,820 meters) from day 30 of gestation. Normoxic control and LTH fetuses were catheterized on day 132 of gestation. In the LTH group, maternal Po(2) was maintained comparable to that observed at altitude ( approximately 60 mmHg) by nitrogen infusion through a tracheal catheter. On day 137, fetuses received a 5-h saline infusion followed by infusion of sodium nitroprusside to reduce fetal arterial pressure by 30-35% for 10 min. The study was repeated on day 139 of gestation with a continuous cortisol infusion (10 microg/min). Hypothalamic and pituitary tissues were collected from additional fetuses for assessment of glucocorticoid receptors. During the saline infusion in response to hypotension, plasma ACTH increased over preinfusion mean values in both groups (P < 0.05). Plasma cortisol concentrations increased in both groups concomitant with increased ACTH secretion. However, peak values in the LTH fetuses were significantly higher compared with controls (P < 0.05). During the cortisol infusion, the ACTH response was eliminated in both groups, with ACTH levels significantly lower in the LTH group (P < 0.05). Glucocorticoid receptor binding was not different between groups. These results demonstrate an enhanced cortisol response to hypotension in LTH fetuses that does not appear to be the result of an increase in negative feedback sensitivity of the hypothalamic-pituitary-adrenal axis.  相似文献   
7.
The response of two strains of Dunaliella, a beta-carotene accumulating halotolerant alga, was evaluated under sulphate, nitrate and phosphate limitation. All these factors decreased the growth rate and chlorophyll content but, increased the beta-carotene content of the two isolates of Dunaliella, D1, obtained from GTCC and D2 an indigenous strain isolated from Sambhar salt lake, India. Both the strains exhibited accumulation of beta-carotene and glycerol under the different nutrient limiting conditions. A maximum accumulation of 3.99 pg/cell of beta-carotene was observed under phosphate depletion. However, nutrient depletion did not significantly affect the glycerol accumulation in these cells. D2, the indigenous isolate, was found to be a better accumulator of beta-carotene than D1.  相似文献   
8.
Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM) sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized) did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.  相似文献   
9.
10.

Background  

Reproductive failure, determined as recurrent spontaneous abortions (RSA) or recurrent implantation failure (RIF) in women is not well understood. Several factors, including embryo quality, and cellular and molecular changes in endometrium may contribute to the insufficient feto-maternal interaction resulting in reproductive failure. Prior clinical studies suggest an inadequate endometrial growth and development of the endometrium, leading to a lesser endometrial thickness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号