首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   8篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   8篇
  2014年   6篇
  2013年   19篇
  2012年   7篇
  2011年   11篇
  2010年   8篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   8篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1996年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.

Blossom blight caused by Botrytis cinerea is one among the most devastating diseases that cause complete post-harvest loss in flower crops. The present study focuses on the development of effective bioformulation towards suppression of blossom blight and plant growth promotion in rose. Bacillus amyloliquefaciens (VB2) and Bacillus subtilis (AP) effectively inhibited mycelial growth of B. cinerea in vitro. Genome screening of VB2 and AP revealed the presence of antimicrobial peptide genes including, ituD, ipa14, bacA, bacD, srfA, sfP, spaC, spaS responsible for the biosynthesis of antibiotics such as iturin, bacilysin, bacillomycin, surfactin and subtilin. Further, the presence of volatile antifungal compounds in the bacterial secretome was identified through gas chromatography–mass spectrometry (GC/MS) analysis. Upon treatment, AP accelerated the metabolite profile of the plants and a rise in peak area of antifungal compounds such as, pentadecanoic acid, n-hexadecanoic acid, octadecanoic acid (stearic acid) and tetradecanoic acid was observed. In vitro, VB2 produced maximum indole acetic acid (9.17 µg/ml) and gibberellic acid (8.20 µg/ml) in nutrient broth. Under field conditions, foliar spray of VB2 at 0.5% (5 ml/l), four times at weekly interval suppressed blossom blight incidence (64% reduction over control) and also promoted yield. Future research towards development of an effective bioformulation with extended shelf life will aid in the management of various fungal, bacterial and viral diseases in different crop plants.

  相似文献   
2.
This study dealt with the demetalation and remetalation chemistry of the copper-containing protein ceruloplasmin. For the enzyme from human plasma, dialysis against cyanide at 4°C readily removed copper. Although the apoprotein took up copper(I) at the same temperature, the characteristic blue color of the native protein did not return to any significant extent. However, excellent reconstitution occurred when we added copper(I) at room temperature. With porcine ceruloplasmin, it was more practical to carry out the copper removal step at room temperature, but the reconstitution went smoothly at 4°C. With either source of ceruloplasmin, the binding of the six essential copper ions was generally a highly cooperative process, but the results were different when we combined the apoprotein with Hg(II). After the protein took up 2 mercury ions, it would take up only 1–2 more metal ions even after exposure to a large excess of copper(I). In order to accomodate the various experimental results, we have proposed that a reversible conformational change must occur during the demetalation and remetalation processes. During the remetalation process, it is therefore important that metal uptake occurs in the proper sequence.  相似文献   
3.
The therapeutic effects of lithium in bipolar disorder are poorly understood. Lithium decreases free inositol levels by inhibiting inositol monophosphatase 1 and myo-inositol 3-phosphate synthase (IPS). In this study, we demonstrate for the first time that IPS can be phosphorylated. This was evident when purified rat IPS was dephosphorylated by lambda protein phosphatase and analyzed by phospho-specific ProQ-Diamond staining and Western blot analysis. These techniques demonstrated a mobility shift consistent with IPS being phosphorylated. Mass spectral analysis revealed that Serine-524 (S524), which resides in the hinge region derived from exon 11 of the gene, is the site for phosphorylation. Further, an antibody generated against a synthetic peptide of IPS containing monophosphorylated-S524, was able to discriminate the phosphorylated and non-phosphorylated forms of IPS. The phosphoprotein is found in the brain and testis, but not in the intestine. The intestinal IPS isoform lacks the peptide bearing S524, and hence, cannot be phosphorylated. Evidences suggest that IPS is monophosphorylated at S524 and that the removal of this phosphate does not alter its enzymatic activity. These observations suggest a novel function for IPS in brain and other tissues. Future studies should resolve the functional role of phospho-IPS in brain inositol signaling.  相似文献   
4.
Alterations of endothelial cells and the vasculature play a central role in the pathogenesis of a broad spectrum of the most dreadful of human diseases, as endothelial cells have the key function of participating in the maintenance of patent and functional capillaries. The endothelium is directly involved in peripheral vascular disease, stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, tumor growth, metastasis, venous thrombosis, and severe viral infectious diseases. Dysfunction of the vascular endothelium is thus a hallmark of human diseases. In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.  相似文献   
5.
We previously demonstrated that glia maturation factor (GMF), a brain specific protein, isolated, sequenced and cloned in our laboratory, induce expression of proinflammatory cytokines and chemokines in the central nervous system. We also reported that the up-regulation of GMF in astrocytes leads to the destruction of neurons suggesting a novel pathway of GMF-mediated cytotoxicity of brain cells, and implicated its involvement in the pathogenesis of inflammatory neurodegenerative diseases. In the present study, we examined the expressions of GMF in triple-transgenic Alzheimer’s disease (3xTg-AD) mice. Our results show a 13-fold up-regulation of GMF and 8–12-fold up-regulation of proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β, interferon gamma (IFN-γ), and chemokine (C–C motif) ligand 2 (CCL2) and C–X–C motif chemokine 10 (CXCL10/IP-10) mRNA as determined by quantitative real-time RT-PCR in the brain of 3xTg-AD mice as compared to non-transgenic (Non-Tg) mice. In conclusion, the increase in GMF and cytokine/chemokine expression was correlated with reactive glial fibrillary acidic protein positive astrocytes and ionized calcium binding adaptor molecule 1 (Iba-1)-positive microglia in 3xTg-AD mice.  相似文献   
6.
Proline (Pro) plays a versatile role in cell metabolism and physiology. Pro and hydroxypro are major imino acids present in collagen, an important connective tissue protein, essential for wound healing, which is a primary response to tissue injury. This study explains the role of l-pro on cutaneous wound healing in rats when administered both topically and orally. Open excision wounds were made on the back of rats, and 200 μl (200 mg) of pro was administered topically and orally once daily to the experimental rats until the wounds healed completely. The control wounds were left untreated. Granulation tissues formed were removed after day 4 and 8 of post excision wounding, and biochemical parameters such as total protein, collagen, hexosamine, and uronic acid were estimated. Levels of enzymatic and non-enzymatic antioxidants such as catalase, superoxide dismutase, glutathione peroxidase, ascorbic acid, and reduced glutathione were evaluated along with lipid peroxides in the granulation tissues. Tensile strength and period of epithelialization were also measured. It was observed that the treated wounds healed very fast as evidenced by augmented rates of epithelialization and wound contraction, which was also confirmed by histological examinations. The results strappingly authenticate the beneficial effects of the topical administration of l-proline in the acceleration of wound healing than the oral administration and control.  相似文献   
7.
Statistical optimization is an effective technique for the investigation of complex processes with minimal number of experimental runs. In this study, statistical approach was used to study the optimization of media components for lipase production from Yarrowia lipolytica MTCC 35. Mahua cake, glucose, MnCl2 and KH2PO4 were screened to be the most significant variables among the nine medium variables that were tested to determine influence on lipase production by Plackett–Burman design. Central Composite Design was used for further optimization of these screened variables for enhanced lipase production. The determination coefficient (R2) value of 0.922 showed that the regression models adequately explain the data variation and represent the actual relationships between the variables and response. The optimum values of investigated variables for the maximum lipase production were 6.0% Mahua cake, 2.0% glucose, 0.2% MnCl2 and 0.2% KH2PO4. The maximum lipase production (9.40 U mL?1) was obtained under optimal condition.  相似文献   
8.
Intracellular delivery of nucleic acids is one of the critical steps in the transfections. Prior findings demonstrated various strategies including membrane fusion, endosomal escape for the efficient cytoplasmic delivery. In our continuing efforts to improve the nucleic acids transfections, we harnessed cell permeable properties of Tomatidine (T), a steroidal alkaloid abundantly found in green tomatoes for maximizing intracellular delivery of lipoplexes. We doped Tomatidine into liposomes of cationic lipid with amide linker (A) from our lipid library. Six liposomal formulations (AT) of Lipid A (1?mM) with varying concentrations of Tomatidine (0–1?mM) were prepared and evaluated for their transfection efficacies. Owing to its signature characteristic of cell membrane permeability, Tomatidine modulated endocytosis process, enhanced the intracellular delivery of the lipoplexes, and in turn increased the transfection efficacy of cationic liposomes. Our findings provide ‘proof of concept’ for enhancing transfections in gene delivery applications with Tomatidine in cationic liposomal formulations. These findings can be further applied in lipid mediated gene therapy and drug delivery applications.  相似文献   
9.
These ligands (L) show a bidentate behavior, forming octahedral ruthenium complexes. The title complexes were subjected to in-vivo anticancer activity tests against a transplantable murine tumor cell line, Ehrlich's Ascitic Carcinoma (EAC) and in-vitro antibacterial activity against several Gram positive and Gram negative bacterial strains. [Ru(bpy)2(ihqs)]Cl2 and [Ru(bpy)2 (hc)]Cl2 (where bpy = 2,2'-bipyridine, ihqs = 7-iodo-8hydroxy quinoline-5-sulphonic acid and hc = 3-hydroxy coumarin) showed promising antitumor activity. Treatment with these complexes prolonged the life span of EAC bearing mice as well as decreased their tumor volume and viable ascitic cell count. All the tested complexes exhibited mild to moderate antibacterial activity.  相似文献   
10.
Nitric oxide production by arsenite   总被引:6,自引:0,他引:6  
Gurr JR  Yih LH  Samikkannu T  Bau DT  Lin SY  Jan KY 《Mutation research》2003,533(1-2):173-182
Arsenic can either enhance or reduce nitric oxide (NO) production, depending on the type of cell, the species and dose of arsenical tested. The mechanisms of how arsenic increases or decreases NO production remain unclear. Because NO is associated with many pathological conditions, it is conceivable that in those arsenic-target tissues, the NO production may be upregulated by continuous arsenic exposure, and a prolonged over-production of NO may cause inflammation hence a pathological condition. A prolonged interference with the normal physiological level of NO may also play a role in the initiation, promotion, and progression of arsenic-related human cancers. Suppression of NO production has been shown to reduce arsenite-induced oxidative DNA damage, inhibition of pyrimidine dimer excision, and micronuclei. However, a completely reliable story on how NO is involved in arsenic-related human disease is still lacking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号