首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   13篇
  2020年   2篇
  2018年   2篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   10篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   9篇
  2006年   10篇
  2005年   13篇
  2004年   8篇
  2003年   10篇
  2002年   11篇
  2001年   2篇
  2000年   8篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1979年   1篇
  1968年   1篇
排序方式: 共有147条查询结果,搜索用时 281 毫秒
1.
K. Katou  T. Taura  M. Furumoto 《Protoplasma》1987,140(2-3):123-132
Summary The mechanism of water movement across roots is, as yet, not well understood. Some workable black box theories have already been proposed. They, however, assumed unrealistic cell membranes with low values of , or were based on a poor anatomical knowledge of roots. The role of root stele in solute and water transport seems to be especially uncertain. An attempted explanation of the nature of root exudation and root pressure by applying the apoplast canal theory (Katou andFurumoto 1986 a, b) to transport in the root stele is given. The canal equations are solved for boundary conditions based on anatomical and physiological knowledge of the root stele. It is found that the symplast cell membrane, cell wall and net solute transport into the wall apoplast are the essential constituents of the canal system. Numerical analysis shows that the canal system enables the coupled transport of solutes and water into a xylem vessel, and the development of root pressure beyond the level predicted by the osmotic potential difference between the ambient medium and the exudate. Observations on root exudation and root pressure previously reported seem to be explained quite well. It is concluded that the movement of water in the root stele although apparently active is essentially osmotic.Abbreviations J v ex volume exudation per root surface - J0 non-osmotic exudation - Lr overall radial hydraulic conductivity of an excised root - reflection coefficient - Cs difference in the osmotic concentration between the bathing medium and the exudate - R gas constant - T absolute temperature - CK molar concentration of K+ - CCl molar concentration of Cl - Cj molar concentration of ion species j - Pj membrane permeability of ion j - zj valence of ion j - F Faraday constant - Vix intracellular electric potential with reference to the canal  相似文献   
2.
3.
    
TheMagnaporthe grisea repeat (MGR) sequence MGR586 has been widely used for population studies of the rice blast fungus, and has enabled classification of the fungal population into hundreds of genetic lineages. While studying the distribution of MGR586 sequences in strains ofM. grisea, we discovered that the plasmid probe pCB586 contains a significant amount of single-copy DNA. To define precisely the boundary of the repetitive DNA in pCB586, this plasmid and four cosmid clones containing MGR586 were sequenced. Only 740 bp of one end of the 2.6-bp insert in the pCB586 plasmid was common to all clones. DNA sequence analysis of cosmid DNA revealed that all the cosmids contained common sequences beyond the cloning site in pCB586, indicating that the repetitive DNA in the fingerprinting clone is part of a larger element. The entire repetitive element was sequenced and found to resemble an inverted repeat transposon. This putative transposon is 1.86 kb in length and has perfect terminal repeats of 42 bp, which themselves contain direct repeats of 16 bp. The internal region of the transposon possesses one open reading frame which shows similarity at the peptide level to the Pot2 transposon fromM. grisea and Fot1 fromFusarium oxysporum. Hybridization studies using the entire element as a probe revealed that some strains ofM. grisea, whose DNA hybridized to the pCB586 probe, entirely lacked MGR586 transposon sequences.  相似文献   
4.
A number of secY mutants of Escherichia coli showing protein export defects were isolated by a combination of localized mutagenesis and secA-lacZ screening. Most of them were cold sensitive and contained single base substitutions in secY leading to amino acid replacements in various parts of the SecY protein, mainly in the cytoplasmic and the transmembrane domains. A temperature-sensitive mutant with an export defect had the same base substitution as secY24, which was characterized previously. Many cold-sensitive secY mutants exhibited rapid responses to temperature lowering but their apparent defects varied at the permissive temperature. Others exhibited delayed responses to the temperature shift. Some secY mutations, including secY39, interfered with protein export when expressed from a multicopy plasmid, even in the presence of wild-type secY on the chromosome. Such dominant negative mutations, including secY –d l, which was studied previously, were all located in either cytoplasmic domain 5 or 6, which is consistent with our previous proposal that the C-terminal region of SecY is important for its function as a protein translocator. We also studied the phenotypes of strains in which one of the secY mutations was combined with the components of the SecD operon. Overexpression of SecD partially suppressed the secY39 mutation, while overexpression of secF exacerbated the export defects of secY122 and secY125 mutations. Overexpression of yajC, located within the SecD operon, suppressed sec Y –d1. Although yajC itself proved to be dispensable, its disruption impaired the growth of the secY39 mutant at 42°C. These observations suggest that SecY interacts with SecD, SecF, and the product of yajC.  相似文献   
5.
T Taura  T Baba  Y Akiyama    K Ito 《Journal of bacteriology》1993,175(24):7771-7775
While SecY in wild-type Escherichia coli cells is stable and is complexed with other proteins within the membrane, moderately overexpressed and presumably uncomplexed SecY was degraded with a half-life of 2 min. The fact that the amount of stable SecY is strictly regulated by the degradation of excess SecY was demonstrated by competitive entry of the SecY+ protein and a SecY-LacZ alpha fusion protein into the stable pool. Simultaneous overexpression of SecE led to complete stabilization of excess SecY. Overproduced SecD and SecF did not affect the stability of SecY, but plasmids carrying ORF12 located within the secD-secF operon partially stabilized this protein. In contrast, mutational reduction of the SecE content (but not the ORF12 content) led to the appearance of two populations of newly synthesized SecY molecules, one that was immediately degraded and one that was completely stable. Thus, the E. coli cell is equipped with a system that eliminates SecY unless it is complexed with SecE, a limiting partner of SecY. Our observations implied that in wild-type cells, SecY and SecE rapidly associate with each other and remain complexed.  相似文献   
6.
Summary The Escherichia coli gene ssyB was cloned and sequenced. The ssyB63 (Cs) mutation is an insertion mutation in nusB, while the nusB5 (Cs) mutation suppresses secY24, indicating that inactivation of nusB causes cold-sensitive cell growth as well as phenotypic suppression of secY24. The correct map position of nusB is 9.5 min rather than I I min as previously assigned. It is located at the distal end of an operon that contains a gene showing significant homology with a Bacillus subtilis gene involved in riboflavin biosynthesis.  相似文献   
7.
Monoclonal antibody YC10 showed specificity for the phosphorylated form of human, bovine and porcine glial fibrillary acidic proteins (GFAPs) and negligible reactivity towards the dephosphorylated form of the GFAPs. Analysis of species specificity and of the epitope, determined using synthetic phosphopeptides, indicated that this antibody recognized the local phosphorylation-site sequence Thr-phosphoSer-Ala-Ala-Arg-Arg (residues 7-12 of GFAP). Making use of this antibody we developed a non-radioactive method to measure protein kinase activities. After incubation of a protein kinase with non-radioactive ATP in ninety-six wells coated with the synthetic peptide Arg-Arg-Arg-Val-Thr-Ser-Ala-Ala-Arg-Arg-Ser-Cys (residues 3-13 of GFAP), the phosphorylated product was detected by using this mouse antibody and peroxidase-labeled goat anti-mouse IgG. This method proved to be equally as sensitive as the radioactive method for the measurement of protein kinase activities and was less affected by concentrations of ATP present in the reaction mixture.  相似文献   
8.
Characterization of cold-sensitive secY mutants of Escherichia coli.   总被引:10,自引:2,他引:8       下载免费PDF全文
Mutations which cause poor growth at a low temperature, which affect aspects of protein secretion, and which map in or around secY (prlA) were characterized. The prlA1012 mutant, previously shown to suppress a secA mutation, proved to have a wild-type secY gene, indicating that this mutation cannot be taken as genetic evidence for the secA-secY interaction. Two cold-sensitive mutants, the secY39 and secY40 mutants, which had been selected by their ability to enhance secA expression, contained single-amino-acid alterations in the same cytoplasmic domain of the SecY protein. Protein export in vivo was partially slowed down by the secY39 mutation at 37 to 39 degrees C, and the retardation was immediately and strikingly enhanced upon exposure to nonpermissive temperatures (15 to 23 degrees C). The rate of posttranslational translocation of the precursor to the OmpA protein (pro-OmpA protein) into wild-type membrane vesicles in vitro was only slightly affected by reaction temperatures ranging from 37 to 15 degrees C, and about 65% of OmpA was eventually sequestered at both temperatures. Membrane vesicles from the secY39 mutant were much less active in supporting pro-OmpA translocation even at 37 degrees C, at which about 20% sequestration was attained. At 15 degrees C, the activity of the mutant membrane decreased further. The rapid temperature response in vivo and the impaired in vitro translocation activity at low temperatures with the secY39 mutant support the notion that SecY, a membrane-embedded secretion factor, participates in protein translocation across the bacterial cytoplasmic membrane.  相似文献   
9.
Four analogs of succinoyl trehalose lipid-3 (STL-3)with saturated even-number or odd-number carbonchains, and unsaturated or halogenated fatty acidswere examined for their ability to inhibit the growthand induce the differentiation of HL-60 humanpromyelocytic leukemia cells. The optimalconcentration of STL-3 at which such activities wererecognized was closed to the critical micelleconcentration of STL-3. Analog of STL-3 witheven-number or odd-number carbon chain and unsaturatedfatty acids strongly inhibited growth and induced thedifferentiation of HL-60 cells, as evaluated in termsof nitroblue tetrazilium-reducing activity and theappearance of the CD36 antigen. An analog of STL-3with halogenated fatty acids significantly inhibitedproliferation but only induced the differentiation ofHL-60 cells. Our results indicate that the effects ofSTL-3 and its analogs on HL-60 cells depend on thestructure of the hydrophobic moiety of STL-3.These authors contributed equally to this work  相似文献   
10.
The starch‐statolith hypothesis proposes that starch‐filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so‐called ‘static’ or ‘settled’ statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom‐designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild‐type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1  g . sgr2 mutants were able to sense and respond to gravity under 30  g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity‐driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1  g . We found that the correlation between hypergravity‐induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild‐type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the ‘bottom’ of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1  g .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号