首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   23篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   11篇
  2015年   10篇
  2014年   9篇
  2013年   9篇
  2012年   7篇
  2011年   15篇
  2010年   10篇
  2009年   7篇
  2008年   15篇
  2007年   11篇
  2006年   14篇
  2005年   13篇
  2004年   13篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
1.
Membrane characteristics of neuron somata in the medulla terminalis ganglionic X-organ of crayfish have been investigated with intracellular glass microelectrodes. The soma membrane developed action potentials with 10–20 mv of overshoot. Delayed rectification appeared at 10–20 mv above resting membrane potential. In 50% of the neuron somata examined, action potentials were observed in Na-free medium or TTX medium. The peak potential level of the spike in these media depended on the extracellular concentration of Ca ion. It increased with the Ca concentration. In low calcium media, the peak potential level of the spike varied with Na concentration. Action potentials of the X-organ-sinus gland tract disappeared after bathing in Na-free or TTX medium, suggesting that the conductive action potential was dependent on Na ions. From these results, it is concluded that there are two systems in the neuron soma, one of which responds to the Na ion and the other, to the Ca ion. Inhibitory innervation of the X-organ by the cerebral ganglion was manifested by IPSP's when the optic peduncle was stimulated. A postulated connection between the Ca-dependent spike and the release of hormone in X-organ neuron somata is discussed.  相似文献   
2.
Ca or EGTA was ionophoretically injected into Paramecium tetraurelia to change [Ca]1. Ca decreased the resting membrane resistance and hyperpolarized the membrane. EGTA had the opposite effect. EGTA following TEA, which suppress GK, had little effect on resistance or resting potential. The I—V relation at steady state was studied before and after EGTA injection while the cell bathed in either K- or TEA-solution. The response to inward test pulses after EGTA injection was similar to that after TEA injection. These results show that [Ca]i controls a steady-state K permeability in Paramecium tetraurelia. A prolonged Ca-spike was recorded after EGTA injection. The plateau potentials in various Ca concentrations in a TEA-solution show the Nernst slope (29 mV for tenfold change in [Ca]0). This result suggests that the prolonged depolarization in this condition is due to a Ca current, after suppression of K-permeability and when [Ca]i is low. The difficulty of obtaining quantitative data an the internal Ca, and the difference between the effects of EGTA injection and TEA injection are discussed.  相似文献   
3.
4.
The β-structure of S-caboxymethyl derivatives of microfibrillar proteins isolated from Merino wool was investigated by X-ray diffraction for comparison with the structur of β-keratin. The S-carboxymethylated microfibrillar proteins(SCMKA) w well-oriented β-films of SCMKA weer obtained by stretching the SCMKA cast films in steam up to about 300% extesnsion. It was found that the reflections in β-pattern of SCMKA may be indexed on a pseudo-orthorhombic unit cell with a =0.94 nm, b = 0.66 nm and c = nm, where the ab, and c axes are in the direction of the interchain hydrogen bonding, the main chain(fibre axis) and the side chain, respectively. The unit cell dimesnions evaluated for SCMKA were almost the same as those for β-keratin, suggeting that few peptide sequences containing S-carboxymethyl cystine may be involved in the formation of β-structure from SCMKA.  相似文献   
5.
6.
Taxonomy of the little‐studied brown algal species Punctaria mageshimensis (Ectocarpales s.l.) was reexamined by molecular phylogeny and morphology. In the genetic analyses of newly collected specimens using plastid rbcL and psaA gene sequences, the specimens morphologically referable to P. mageshimensis were phylogenetically distant from Ectocarpales s.l. and were included in the clade of Spatoglossum (Dictyotales). Morphological reexamination of the type specimen and newly collected specimens confirmed its systematic position in Dictyotales: Branched thallus; cushion‐shaped rhizoidal holdfast occasionally forming secondary holdfast at the bottom of the thallus; many discoidal plastids without pyrenoid per cell; tetrasporangium‐like reproductive structures with dark, homogeneous cell content; occurrence of hair tufts. Genetically P. mageshimensis was most related to a reported sequence of Spatoglossum asperum, but P. mageshimensis was considerably different from S. asperum as well as other known Spatoglossum species in the deep habitat and in having scarcely‐branched lanceolate and considerably thickened thallus. In conclusion, we propose the transfer of P. mageshimensis to Spatoglossum as S. mageshimense comb. nov.  相似文献   
7.
8.
We investigated the role of the cerebral cortex, particularly the face/tongue area of the primary sensorimotor (SMI) cortex (face/tongue) and supplementary motor area (SMA), in volitional swallowing by recording movement-related cortical potentials (MRCPs). MRCPs with swallowing and tongue protrusion were recorded from scalp electrodes in eight normal right-handed subjects and from implanted subdural electrodes in six epilepsy patients. The experiment by scalp EEG in normal subjects revealed that premovement Bereitschaftspotentials (BP) activity for swallowing was largest at the vertex and lateralized to either hemisphere in the central area. The experiment by epicortical EEG in patients confirmed that face/tongue SMI and SMA were commonly involved in swallowing and tongue protrusion with overlapping distribution and interindividual variability. BP amplitude showed no difference between swallowing and tongue movements, either at face/tongue SMI or at SMA, whereas postmovement potential (PMP) was significantly larger in tongue protrusion than in swallowing only at face/tongue SMI. BP occurred earlier in swallowing than in tongue protrusion. Comparison between face/tongue SMI and SMA did not show any difference with regard to BP and PMP amplitude or BP onset time in either task. The preparatory role of the cerebral cortex in swallowing was similar to that in tongue movement, except for earlier activation in swallowing. Postmovement processing of swallowing was lesser than that of tongue movement in face/tongue SMI; probably suggesting that the cerebral cortex does not play a significant role in postmovement processing of swallowing. SMA plays a supplementary role to face/tongue SMI both in swallowing and tongue movements.  相似文献   
9.
A genetic approach to identifying mitochondrial proteins   总被引:9,自引:0,他引:9  
  相似文献   
10.
Reticulocalbin (RCN) is one member of the Ca(2+)-binding proteins in the secretory pathway and is localized in the endoplasmic reticulum. RCN may play a role in the normal behavior and life of cells, although its detailed role remains unknown. Overexpression of RCN may also play a role in tumorigenesis, tumor invasion, and drug resistance. The new antibody for human RCN is used in the distribution of RCN in normal human organs of fetuses and adults with or without inflammation. Immunohistochemical examination demonstrated a broad distribution of RCN in various organs of fetuses and adults, predominantly in the endocrine and exocrine organs. However, RCN expression was heterogeneous in each constituent cell of some organs. Among non-epithelial organs, vascular endothelial cells, testicular germ cells, neurons, and follicular dendritic cells showed strong staining. Plasma cells were the only RCN-positive cells among hematopoietic and lymphoid cells. In inflammatory conditions, RCN expression was enhanced in both epithelial and non-epithelial cells. Heterogeneous expression of RCN indicates that the amount of RCN needed for cell behavior and life may be variable, depending on each cell type and, therefore, RCN may be helpful in establishing the cell origin of neoplasms in some organs. However, further study is needed to establish the significance of RCN in tumorigenesis and in some peculiar features of neoplasms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号