全文获取类型
收费全文 | 247篇 |
免费 | 3篇 |
专业分类
250篇 |
出版年
2021年 | 4篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 4篇 |
2017年 | 6篇 |
2016年 | 7篇 |
2015年 | 9篇 |
2014年 | 11篇 |
2013年 | 27篇 |
2012年 | 28篇 |
2011年 | 17篇 |
2010年 | 12篇 |
2009年 | 7篇 |
2008年 | 17篇 |
2007年 | 17篇 |
2006年 | 18篇 |
2005年 | 9篇 |
2004年 | 4篇 |
2003年 | 10篇 |
2002年 | 7篇 |
2000年 | 1篇 |
1999年 | 7篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1975年 | 3篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有250条查询结果,搜索用时 0 毫秒
1.
Kenichi Harada Eiki Yamashita Atsushi Nakagawa Takamitsu Miyafusa Kouhei Tsumoto Takashi Ueno Yoshiharu Toyama Shigeki Takeda 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(1):284-291
Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92–Gln197) at 1.5 Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane. 相似文献
2.
Takagi R Fujita N Arakawa T Kawada S Ishii N Miki A 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,110(2):382-388
The influence of icing on muscle regeneration after crush injury was examined in the rat extensor digitorum longus. After the injury, animals were randomly divided into nonicing and icing groups. In the latter, ice packs were applied for 20 min. Due to the icing, degeneration of the necrotic muscle fibers and differentiation of satellite cells at early stages of regeneration were retarded by ~1 day. In the icing group, the ratio of regenerating fibers showing central nucleus at 14 days after the injury was higher, and cross-sectional area of the muscle fibers at 28 days was evidently smaller than in the nonicing group. Besides, the ratio of collagen fibers area at 14 and 28 days after the injury in the icing group was higher than in the nonicing group. These findings suggest that icing applied soon after the injury not only considerably retarded muscle regeneration but also induced impairment of muscle regeneration along with excessive collagen deposition. Macrophages were immunohistochemically demonstrated at the injury site during degeneration and early stages of regeneration. Due to icing, chronological changes in the number of macrophages and immunohistochemical expression of transforming growth factor (TGF)-β1 and IGF-I were also retarded by 1 to 2 days. Since it has been said that macrophages play important roles not only for degeneration, but also for muscle regeneration, the influence of icing on macrophage activities might be closely related to a delay in muscle regeneration, impairment of muscle regeneration, and redundant collagen synthesis. 相似文献
3.
Kenji Takeuchi Sayumi Shibamoto Makio Hayakawa Takamitsu Hori Keiji Miyazawa Naomi Kitamura Fumiaki Ito 《Experimental cell research》1996,223(2):420
Hepatocyte growth factor (HGF) stimulated cell migration of human gastric carcinoma cell lines MKN1, MKN7, and MKN28. Epidermal growth factor (EGF) also stimulated the cell migration of these three cell lines. In MKN7 cells, HGF-stimulated cell migration was rather reduced in the presence of EGF, whereas such an observation was not made with MKN1 and MKN28 cells. Therefore, we compared the effect of EGF on HGF-stimulated HGF receptor phosphorylation in these cell lines. HGF induced a rapid tyrosine phosphorylation of the HGF receptor in all these cell lines. In MKN7 cells, the increased phosphorylation was further enhanced by EGF, although EGF alone did not affect tyrosine phosphorylation of the HGF receptor. In MKN1 and MKN28 cells, EGF did not influence tyrosine phosphorylation of the HGF receptor, whether HGF was present or not. The data presented here suggest that EGF negatively modulates the cellular response to HGF by increasing tyrosine phosphorylation of the HGF receptor in certain types of epithelial cells, e.g., MKN7 cells. 相似文献
4.
Toshihiro Kimura Satoshi Fukushima Etsuko Okada Haruka Kuriyama Hisashi Kanemaru Mina Kadohisa‐Tsuruta Yosuke Kubo Satoshi Nakahara Aki Tokuzumi Ikko Kajihara Katsunari Makino Azusa Miyashita Jun Aoi Takamitsu Makino Hirotake Tsukamoto Yasuharu Nishimura Takashi Inozume Rong Zhang Yasushi Uemura Satoru Senju Hironobu Ihn 《Pigment cell & melanoma research》2020,33(5):744-755
Immune checkpoint inhibitors improved the survival rate of patients with unresectable melanoma. However, some patients do not respond, and variable immune‐related adverse events have been reported. Therefore, more effective and antigen‐specific immune therapies are urgently needed. We previously reported the efficacy of an immune cell therapy with immortalized myeloid cells derived from induced pluripotent stem cells (iPS‐ML). In this study, we generated OX40L‐overexpressing iPS‐ML (iPS‐ML‐Zsgreen‐OX40L) and investigated their characteristics and in vivo efficacy against mouse melanoma. We found that iPS‐ML‐Zsgreen‐OX40L suppressed the progression of B16‐BL6 melanoma, and prolonged survival of mice with ovalbumin (OVA)‐expressing B16 melanoma (MO4). The number of antigen‐specific CD8+ T cells was higher in spleen cells treated with OVA peptide‐pulsed iPS‐ML‐Zsgreen‐OX40L than in those without OX40L. The OVA peptide‐pulsed iPS‐ML‐Zsgreen‐OX40L significantly increased the number of tumor‐infiltrating T lymphocytes (TILs) in MO4 tumor. Flow cytometry showed decreased regulatory T cells but increased effector and effector memory T cells among the TILs. Although we plan to use allogeneic iPS‐ML in the clinical applications, iPS‐ML showed the tumorgenicity in the syngeneic mice model. Incorporating the suicide gene is necessary to ensure the safety in the future study. Collectively, these results indicate that iPS‐ML‐Zsgreen‐OX40L therapy might be a new method for antigen‐specific cancer immunotherapy. 相似文献
5.
Plants have evolved various means for controlled and organized cell destruction, known as programmed cell death (PCD). In
plant immune responses against microbial infection, hypersensitive cell death as a form of PCD is a crucial event to prevent
the spread of biotrophic pathogens. Recent live cell imaging techniques have revealed dynamic features and significant roles
of cytoskeletons and the vacuole during defense responses and the PCD. Actin microfilaments (MFs) focus on the infection sites
and function as tracks for the polar transport of antimicrobial materials. To accomplish hypersensitive cell death, further
dynamic changes in cytoskeletons are induced. MFs play a role in the structural and functional regulation of the vacuole,
leading to execution of the PCD. We here overview spatiotemporal dynamic changes in the cytoskeletons and the vacuoles triggered
by signals from pathogens, and propose a hypothetical model for MF-regulated vacuole-mediated PCD in plant immunity. 相似文献
6.
Saigusa T Reichert R Guare J Siroky BJ Gooz M Steele S Fenton RA Bell PD Kolb RJ 《American journal of physiology. Renal physiology》2012,302(7):F801-F808
Polycystic kidney disease (PKD) is a ciliopathy characterized by renal cysts and hypertension. These changes are presumably due to altered fluid and electrolyte transport in the collecting duct (CD). This is the site where vasopressin (AVP) stimulates vasopressin-2 receptor (V2R)-mediated aquaporin-2 (AQP2) insertion into the apical membrane. Since cysts frequently occur in the CD, we studied V2R and AQP2 trafficking and function in CD cell lines with stunted and normal cilia [cilia (-), cilia (+)] derived from the orpk mouse (hypomorph of the Tg737/Ift88 gene). Interestingly, only cilia (-) cells grown on culture dishes formed domes after apical AVP treatment. This observation led to our hypothesis that V2R mislocalizes to the apical membrane in the absence of a full-length cilium. Immunofluorescence indicated that AQP2 localizes to cilia and in a subapical compartment in cilia (+) cells, but AQP2 levels were elevated in both apical and basolateral membranes in cilia (-) cells after apical AVP treatment. Western blot analysis revealed V2R and glycosylated AQP2 in biotinylated apical membranes of cilia (-) but not in cilia (+) cells. In addition, apical V2R was functional upon apical desmopressin (DDAVP) treatment by demonstrating increased cAMP, water transport, and benzamil-sensitive equivalent short-circuit current (I(sc)) in cilia (-) cells but not in cilia (+) cells. Moreover, pretreatment with a PKA inhibitor abolished DDAVP stimulation of I(sc) in cilia (-) cells. Thus we propose that structural or functional loss of cilia leads to abnormal trafficking of AQP2/V2R leading to enhanced salt and water absorption. Whether such apical localization contributes to enhanced fluid retention and hypertension in PKD remains to be determined. 相似文献
7.
Takamitsu Fujimaki Hisato Ishii Akira Matsuno Hajime Arai Tadayoshi Nakagomi 《World journal of surgical oncology》2007,5(1):89
Background
Malignant gliomas recur even after extensive surgery and chemo-radiotherapy. Although a relatively novel chemotherapeutic agent, temozolomide (TMZ), has demonstrated promising activity against recurrent glioma, the effects last only a few months and drug resistance develops thereafter in most cases. Induction of O6-methylguanine-DNA methyltransferase (MGMT) in tumors is considered to be responsible for resistance to TMZ. Interferon-beta has been reported to suppress MGMT in an experimental glioma model. Here we report a patient with TMZ-refractory anaplastic astrocytoma (AA) who was treated successfully with a combination of interferon-beta and TMZ.Case presentation
A patient with recurrent AA after radiation-chemotherapy and stereotactic radiotherapy was treated with TMZ. After 6 cycles, the tumor became refractory to TMZ, and the patient was treated with interferon-beta at 3 × 106 international units/body, followed by 5 consecutive days of 200 mg/m2 TMZ in cycles of 28 days. After the second cycle the tumor decreased in size by 50% (PR). The tumor showed further shrinkage after 8 months and the patient's KPS improved from 70% to 100%. The immunohistochemical study of the initial tumor specimen confirmed positive MGMT protein expression.Conclusion
It is considered that interferon-beta pre-administration increased the TMZ sensitivity of the glioma, which had been refractory to TMZ monotherapy.8.
Ohtake Y Sato T Matsuoka H Nishimoto M Taka N Takano K Yamamoto K Ohmori M Higuchi T Murakata M Kobayashi T Morikawa K Shimma N Suzuki M Hagita H Ozawa K Yamaguchi K Kato M Ikeda S 《Bioorganic & medicinal chemistry》2011,19(18):5334-5341
5a-Carba-β-D-glucopyranose derivatives were synthesized and identified as novel SGLT2-selective inhibitors. These inhibitors exhibited potent SGLT2 inhibition with high selectivity over SGLT1. Among the tested compounds, 6f indicated the most potent hSGLT2 inhibition and the highest selectivity over hSGLT1. Moreover, the pharmacokinetics data also showed that 6h, which had the same aglycon structure as sergliflozin-active (3-active), had a threefold longer half-life time (T(1/2)) than sergliflozin (3) with a high distribution volume in db/db mice. Subsequently, 6h lowered blood glucose levels as much as 3 and showed longer hypoglycemic action than 3 in db/db mice. 相似文献
9.
Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH > 11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu–S(Cys) stretching frequency was shifted to higher frequency region at pH 11. The higher frequency shift of Cu–S(Cys) bond is implied the stronger Cu–S(Cys) bond at alkaline transition pH 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH > 11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH > 11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine –SCH3 part and coordinated histidine imidazole moiety. The introduction of π–π interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability. 相似文献
10.
Ionizing radiation-induced genomic instability has been demonstrated in a variety of endpoints such as delayed reproductive death, chromosome instability and mutations, which occurs in the progeny of survivors many generations after the initial insult. Dependence of these effects on the linear energy transfer (LET) of the radiation is incompletely characterized; however, our previous work has shown that delayed reductions in clonogenicity can be most pronounced at LET of 108 keV/microm. To gain insight into potential cellular mechanisms involved in LET-dependent delayed loss of clonogenicity, we investigated morphological changes in colonies arising from normal human diploid fibroblasts exposed to gamma-rays or energetic carbon ions (108 keV/microm). Exposure of confluent cultures to carbon ions was 4-fold more effective at inactivating cellular clonogenic potential and produced more abortive colonies containing reduced number of cells per colony than gamma-rays. Second, colonies were assessed for clonal morphotypic heterogeneity. The yield of differentiated cells was elevated in a dose- and LET-dependent fashion in clonogenic colonies, whereas differentiated cells predominated to a comparable extent irrespective of radiation type or dose in abortive colonies. The incidence of giant or multinucleated cells was also increased but much less frequent than that of differentiated cells. Collectively, our results indicate that carbon ions facilitate differentiation more effectively than gamma-rays as a major response in the progeny of irradiated fibroblasts. Accelerated differentiation may account, at least in part, for dose- and LET-dependent delayed loss of clonogenicity in normal human diploid cells, and could be a defensive mechanism that minimizes further expansion of aberrant cells. 相似文献