全文获取类型
收费全文 | 5555篇 |
免费 | 238篇 |
国内免费 | 1篇 |
专业分类
5794篇 |
出版年
2023年 | 17篇 |
2022年 | 32篇 |
2021年 | 66篇 |
2020年 | 42篇 |
2019年 | 59篇 |
2018年 | 86篇 |
2017年 | 78篇 |
2016年 | 122篇 |
2015年 | 184篇 |
2014年 | 213篇 |
2013年 | 350篇 |
2012年 | 322篇 |
2011年 | 358篇 |
2010年 | 213篇 |
2009年 | 210篇 |
2008年 | 301篇 |
2007年 | 319篇 |
2006年 | 293篇 |
2005年 | 286篇 |
2004年 | 279篇 |
2003年 | 273篇 |
2002年 | 263篇 |
2001年 | 133篇 |
2000年 | 121篇 |
1999年 | 112篇 |
1998年 | 73篇 |
1997年 | 52篇 |
1996年 | 37篇 |
1995年 | 49篇 |
1994年 | 32篇 |
1993年 | 44篇 |
1992年 | 56篇 |
1991年 | 64篇 |
1990年 | 68篇 |
1989年 | 60篇 |
1988年 | 63篇 |
1987年 | 33篇 |
1986年 | 44篇 |
1985年 | 40篇 |
1984年 | 24篇 |
1983年 | 36篇 |
1982年 | 39篇 |
1981年 | 18篇 |
1979年 | 20篇 |
1978年 | 25篇 |
1977年 | 29篇 |
1976年 | 18篇 |
1975年 | 17篇 |
1974年 | 17篇 |
1973年 | 17篇 |
排序方式: 共有5794条查询结果,搜索用时 0 毫秒
1.
2.
3.
Background
Fabry disease is an X-linked inherited metabolic condition where the deficit of the α-galactosidase A enzyme, encoded by the GLA gene, leads to glycosphingolipid storage, mainly globotriaosylceramide. To date, more than 600 mutations have been identified in human GLA gene that are responsible for FD, including missense and nonsense mutations, small and large deletions. Such mutations are usually inherited, and cases of de novo onset occur rarely.Case presentation
In this article we report an interesting case of a 44-year-old male patient suffering from a severe form of Fabry disease, with negative family history. The patient showed signs such as cornea verticillata, angiokeratomas, cardiac and neurological manifestations, an end-stage renal disease and he had low α-galactosidase A activity. We detected, in this subject, the mutation c.493 G?>?C in the third exon of the GLA gene which causes the amino acid substitution D165H in the protein. This mutation affects the amino acid - belonging to the group of buried residues - involved, probably, in the preservation of the protein folding. Moreover, studies of multiple sequence alignment indicate that this amino acid is highly conserved, thus strengthening the hypothesis that it is a key amino acid to the enzyme functionality. The study of the relatives of the patient showed that, surprisingly, none of the members of his family of origin had this genetic alteration, suggesting a de novo mutation. Only his 11-year-old daughter - showing acroparaesthesias and heat intolerance with reduced enzymatic activity - had the same mutation.Conclusions
We suggest that a non-inherited mutation of the α-galactosidase A gene is responsible for Fabry disease in the patient who had reduced enzyme activity and classical clinical manifestations of the disease. In a family, it is rare to find only one Fabry disease affected subject with a de novo mutation. These findings emphasize the importance of early diagnosis, genetic counselling, studying the genealogical tree of the patients and starting enzyme replacement therapy to prevent irreversible vital organ damage that occurs during the course of the disease. 相似文献4.
Suguru Takatsuto Nahoko Kosuga Bun-ichi Abe Takahiro Noguchi Shozo Fujioka Takao Yokota 《Journal of plant research》1999,112(1):27-33
Triticum aestivum L.) and foxtail millet (Setaria italica Beauv.) were found by GC-MS to contain, in addition to bulk sterols, 4-en-3-one steroids including 24-ethylcholesta-4,24(28)Z- dien-3-one (a new steroid), 24-methylcholest-4-en-3-one, 24-ethylcholesta-4,22E-dien-3-one and 24-ethylcholest-4-en-3-one, as well as 5α-steroidal 3-one compounds including 24-methyl-5α-cholestan-3-one,
24-ethyl-5α-cholestan-3-one and 24-ethyl 5α-cholest-22E-en-3-one (in S. italica only). Analysis of free sterol and steryl ester fractions indicated that campestanol and sitostanol were present at high
levels in both seeds. These results suggest that the seeds of T. aestivum and S. italica synthesize campestanol from campesterol via 24-methylcholest-4-en-3-one and 24-methyl-5α-cholestan-3-one as has already been
demonstrated in Arabidopsis thaliana L., and also produce sitostanol from sitosterol via 24-ethylcholest-4-en-3-one and 24-ethyl-5α-chotestan-3-one. Biosynthetic
relationships of campestanol and sitostanol with C28 and C29 brassinosteroids are discussed.
Received 4 September 1998/ Accepted in revised form 26 November 1998 相似文献
5.
Miyamoto K Okunishi M Nukui E Tsuchiya T Kobayashi T Imada C Tsujibo H 《Archives of microbiology》2007,188(6):619-628
6.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups and transports electron equivalents across the vesicle membranes to convert intravesicular monodehydroascorbate radical to ascorbate. We found previously that treatment of oxidized cytochrome b(561) with diethyl pyrocarbonate caused specific N-carbethoxylation of three fully conserved residues (His88, His161, and Lys85) located at the extravesicular side. The modification lead to a selective loss of the electron-accepting ability from ascorbate without affecting the electron donation to monodehydroascorbate radical [Tsubaki, M., Kobayashi, K., Ichise, T., Takeuchi, F., and Tagawa, S. (2000) Biochemistry 39, 3276-3284]. In the present study, we found that these modifications lead to a drastic decrease of the midpoint potential of heme b at the extravesicular side from +60 to -30 mV. We found further that the O-carbethoxylation of one tyrosyl residue (Tyr218) located at the extravesicular side was significantly enhanced under alkaline conditions, leading to a very slow reduction process of the oxidized heme b with ascorbate. On the other hand, the presence of ascorbate during the treatment with diethyl pyrocarbonate was found to suppress the carbethoxylation of His88, His161, and Tyr218, whereas the modification level of Lys85 was not affected. Concomitantly, the final reduction level of heme b with ascorbate was protected, although the fast reduction phase was not fully restored. These results suggest that the two heme-coordinating histidyl residues (His88 and His161) are also a part of the ascorbate binding site. Tyr218 and Lys85 may have a role in the recognition/binding process for ascorbate and are indispensable for the fast electron transfer reaction. 相似文献
7.
The new species Tinocladia sanrikuensis sp. nov. H.Kawai, K.Takeuchi & T.Hanyuda (Ectocarpales s.l., Phaeophyceae) is described from the Pacific coast of the Tohoku region, northern Japan based on morphology and DNA sequences. The species is a spring–summer annual growing on lower intertidal to upper subtidal rocks and cobbles on relatively protected sites. T. sanrikuensis has a slimy, cylindrical, multiaxial erect thallus, slightly hollow when fully developed, branching once to twice, and resembles T. crassa in gross morphology. The erect thalli are composed of a dense medullary layer, long subcortical filaments, and assimilatory filaments of 11–35 cells, up to 425 μm long and curved in the upper portion. Unilocular zoidangia are formed on the basal part of assimilatory filaments. The species is genetically most closely related to T. crassa and has the same basic thallus structures but differs in having thinner and longer assimilatory filaments. DNA sequences of the mitochondrial cox1 and cox3, chloroplast atpB, psaA, psbA and rbcL genes support the distinctness of this species. 相似文献
8.
Carboxypeptidase Y (CPY) inhibitor, I(C), a yeast cytoplasmic inhibitor in which the N-terminal amino acid is acetylated, was expressed in Escherichia coli and produced as an unacetylated form of I(C) (unaI(C)). Circular dichroism and fluorescence measurements showed that unaI(C) and I(C) were structurally identical and produce identical complexes with CPY. However, the K(i) values for unaI(C) for anilidase and peptidase activity of CPY were much larger, by 700- and 60-fold, respectively, than those of I(C). The reactivities of phenylmethylsulfonyl fluoride and p-chloromercuribenzoic acid toward the CPY-unaI(C) complex were considerably higher than those toward the CPY-I(C) complex. Thus, the N-terminal acetyl group of I(C) is essential for achieving a tight interaction with CPY and for its complete inactivation. 相似文献
9.
The division of labor between template and catalyst is a fundamental property of
all living systems: DNA stores genetic information whereas proteins function as
catalysts. The RNA world hypothesis, however, posits that, at the earlier stages
of evolution, RNA acted as both template and catalyst. Why would such division
of labor evolve in the RNA world? We investigated the evolution of DNA-like
molecules, i.e. molecules that can function only as template, in minimal
computational models of RNA replicator systems. In the models, RNA can function
as both template-directed polymerase and template, whereas DNA can function only
as template. Two classes of models were explored. In the surface models,
replicators are attached to surfaces with finite diffusion. In the compartment
models, replicators are compartmentalized by vesicle-like boundaries. Both
models displayed the evolution of DNA and the ensuing division of labor between
templates and catalysts. In the surface model, DNA provides the advantage of
greater resistance against parasitic templates. However, this advantage is at
least partially offset by the disadvantage of slower multiplication due to the
increased complexity of the replication cycle. In the compartment model, DNA can
significantly delay the intra-compartment evolution of RNA towards catalytic
deterioration. These results are explained in terms of the trade-off between
template and catalyst that is inherent in RNA-only replication cycles: DNA
releases RNA from this trade-off by making it unnecessary for RNA to serve as
template and so rendering the system more resistant against evolving parasitism.
Our analysis of these simple models suggests that the lack of catalytic activity
in DNA by itself can generate a sufficient selective advantage for RNA
replicator systems to produce DNA. Given the widespread notion that DNA evolved
owing to its superior chemical properties as a template, this study offers a
novel insight into the evolutionary origin of DNA. 相似文献
10.