全文获取类型
收费全文 | 503篇 |
免费 | 13篇 |
专业分类
516篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2021年 | 4篇 |
2020年 | 4篇 |
2019年 | 5篇 |
2018年 | 9篇 |
2017年 | 8篇 |
2016年 | 10篇 |
2015年 | 19篇 |
2014年 | 25篇 |
2013年 | 28篇 |
2012年 | 43篇 |
2011年 | 25篇 |
2010年 | 15篇 |
2009年 | 19篇 |
2008年 | 27篇 |
2007年 | 30篇 |
2006年 | 29篇 |
2005年 | 37篇 |
2004年 | 37篇 |
2003年 | 29篇 |
2002年 | 31篇 |
2001年 | 13篇 |
2000年 | 1篇 |
1999年 | 4篇 |
1997年 | 2篇 |
1996年 | 9篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 9篇 |
1989年 | 2篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 5篇 |
1984年 | 4篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 5篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1976年 | 2篇 |
1974年 | 1篇 |
1970年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有516条查询结果,搜索用时 0 毫秒
1.
Kikuma T Ohtsu M Utsugi T Koga S Okuhara K Eki T Fujimori F Murakami Y 《The Journal of biological chemistry》2004,279(20):20692-20698
The yeast Dbp9p is a member of the DEAD box family of RNA helicases, which are thought to be involved in RNA metabolism. Dbp9p seems to function in ribosomal RNA biogenesis, but it has not been biochemically characterized. To analyze the enzymatic characteristics of the protein, we expressed a recombinant Dbp9p in Escherichia coli and purified it to homogeneity. The purified protein exhibited RNA unwinding and binding activity in the absence of NTP, and this activity was abolished by a mutation in the RNA-binding domain. We then characterized the ATPase activity of Dbp9p with respect to cofactor specificity; the activity was found to be severely inhibited by yeast total RNA and moderately inhibited by poly(U), poly(A), and poly(C) but to be stimulated by yeast genomic DNA and salmon sperm DNA. In addition, Dbp9p exhibited DNA-DNA and DNA-RNA helicase activity in the presence of ATP. These results indicate that Dbp9p has biochemical characteristics unique among DEAD box proteins. 相似文献
2.
Nakamura M Kakuda T Qi J Hirata M Shintani T Yoshioka Y Okamoto T Oba Y Nakamura H Ojika M 《Bioscience, biotechnology, and biochemistry》2005,69(9):1749-1752
Xestoquinone and related metabolites (the xestoquinone family) occur in marine sponges and are known to show a variety of biological activities. In this study, the first comprehensive evaluation of antifungal activity was performed for xestoquinone and nine natural and unnatural analogues in comparison with their cytotoxicity. The cytotoxicity against two human squamous cell carcinoma cell lines, A431 and Nakata, indicated that the terminal quinone structure of the polycyclic molecules was important (xestoquinone, etc.) and that the presence of a ketone group at C-3 of the opposite terminus dramatically diminished the activity (halenaquinone, etc.). In contrast, a ketone group at C-3 enhanced the antifungal activity against the plant pathogen, Phytophthora capsici, regardless of the presence of a quinone moiety. The cytotoxicity and antifungal activity of the xestoquinone family were negatively correlated with each other. 相似文献
3.
Susumu Ikegami Yasunori Ooe Takahiko Shimizu Toshihiko Kasahara Tatsuhiko Tsuruta Masako Kijima Minoru Yoshida Teruhiko Beppu 《Development genes and evolution》1993,202(3):144-151
Summary External application of 10 rig/ml (R)-trichostatin A (TSA), a potent and specific inhibitor of mammalian histone deacetylase, to the embryo of the starfish Asterina pectinifera inhibited development during the early gastrula stage before formation of mesenchyme cells. The TSA-sensitive period was limited to the mid-blastula stage before hatching. The pulse-chase experiment clearly demonstrated that TSA induced an accumulation of acetylated histone species in blastulae through inhibition of historic deacetylation. Similar blockage of development at the early gastrula stage was observed with n-butyrate, which has been known as a weak inhibitor of historic deacetylase. These results suggest an intimate role for historic acetylation-deacetylation equilibria in starfish development.
Correspondence to: S. Ikegami 相似文献
4.
Takahiko?MukaiEmail author Toshiyuki?Suzuki Mutsumi?Nishida 《Ichthyological Research》2004,51(3):222-227
The mitochondrial DNA (mtDNA) phylogeny of Japanese Pandaka species (Perciformes: Gobiidae) was inferred from partial nucleotide sequences of the mitochondrial 12S and 16S rRNA genes (1083bp). The resultant mtDNA tree showed two major clades (clade I and clade II), which were inconsistent with the present taxonomic classification. One of the major clades was further divided into two geographical groups, distributed on the Japanese Major Islands (clade I-A) and from Amami-oshima Island to Iriomote Island (clade I-B). The mtDNA haplotypes in clade II were found only on Iriomote Island. The mtDNA divergences in clade I indicated that the Japanese Major Island (clade I-A) and Ryukyu (clade I-B) groups have been geographically isolated from each other for millions of years, based on the putative molecular divergence rate. The geographical distributions of mtDNA haplotypes in clade I-A and clade I-B also suggested that Pandaka gobies had not dispersed to distant offshore islands, indicating that their geographical differentiation may be closely associated with the geological history of the Japanese and Ryukyu Archipelagos.This revised version was published online in January 2005 with corrections to the repetition of the 1st authors name. 相似文献
5.
The potassium uptake activity of the "flow-medium culture" ofa long-day duckweed, Lemna gibba G3, followed a circadian rhythmwhich persisted for more than 5 days under continuous light.The period of the rhythm was about 25 hr under 3000 lux at 26?Cand was slightly over-compensated against temperature, Q10 beinga little less than 1.0. The amplitude of the rhythm was dependenton light intensity, and there was no potassium uptake in thedark. Magnesium uptake was affected by the potassium movementand showed circadian rhythmicity with a small amplitude underconditions where the potassium uptake was already saturated.Calcium uptake did not show any obvious rhythm. In Contrastto L. gibba, a short-day duckweed L. perpusilla 6746 displayedcircadian rhythm of potassium uptake only in the dark and notin the light. This rhythm did not persist beyond the secondcycle. (Received June 13, 1978; ) 相似文献
6.
7.
Koyama S Nagahama T Ootsu N Takayama T Horii M Konishi S Miwa T Ishikawa Y Aizawa M 《Marine biotechnology (New York, N.Y.)》2005,7(4):272-278
We report successful larval hatching of deep-sea shrimp after decompression to atmospheric pressure. Three specimens of deep-sea shrimp were collected from an ocean depth of 1157 m at cold-seep sites off Hatsushima Island in Sagami Bay, Japan, using a pressure-stat aquarium system. Phylogenetic analysis of Alvinocaris sp. based on cytochrome c oxidase subunit gene sequences confirmed that these species were a member of the genus Alvinocaris. All 3 specimens survived to reach atmospheric pressure conditions after stepwise 63-day decompression. Two of the specimens contained eggs, which hatched after 10 and 16 days, respectively, of full decompression. Although no molting of the shrimp larvae was observed during 74 days of rearing under atmospheric pressure, the larvae developed conventional dark-adapted eyes after 15 days. 相似文献
8.
Masaki Kurogochi Takahiko Matsushista Maho Amano Jun-ichi Furukawa Yasuro Shinohara Masato Aoshima Shin-Ichiro Nishimura 《Molecular & cellular proteomics : MCP》2010,9(11):2354-2368
Despite increasing importance of protein glycosylation, most of the large-scale glycoproteomics have been limited to profiling the sites of N-glycosylation. However, in-depth knowledge of protein glycosylation to uncover functions and their clinical applications requires quantitative glycoproteomics eliciting both peptide and glycan sequences concurrently. Here we describe a novel strategy for the multiplexed quantitative mouse serum glycoproteomics based on a specific chemical ligation, namely, reverse glycoblotting technique, focusing sialic acids and multiple reaction monitoring (MRM). LC-MS/MS analysis of de-glycosylated peptides identified 270 mouse serum peptides (95 glycoproteins) as sialylated glycopeptides, of which 67 glycopeptides were fully characterized by MS/MS analyses in a straightforward manner. We revealed the importance of a fragment ion containing innermost N-acetylglucosamine (GlcNAc) residue as MRM transitions regardless the sequence of the peptides. Versatility of the reverse glycoblotting-assisted MRM assays was demonstrated by quantitative comparison of 25 targeted glycopeptides from 16 proteins between mice with homo and hetero types of diabetes disease model.Clinical proteomics focusing on the identification and validation of biomarkers and the discovery of proteins as therapeutic targets is an emerging and highly important area of proteomics. Biomarkers are measurable indicators of a specific biological state (particularly one relevant to the risk of contraction) and the presence or the stage of disease, and are thus expected to be useful for the prediction, detection, and diagnosis of disease as well as to follow the efficacy, toxicology, and side effects of drug treatment, and to provide new functional insights into biological processes.At present, proteomics methods based on mass spectrometry (MS) have emerged as the preferred strategy for discovery of diagnostic, prognostic, and therapeutic protein biomarkers. Most biomarker discovery studies use unbiased, “identified-based” approaches that rely on high performance mass spectrometers and extensive sample processing. Semiquantitative comparisons of protein relative abundance between disease and control patient samples are used to identify proteins that are differentially expressed and, thus, to populate lists of potential biomarkers. De novo proteomics discovery experiments often result in tens to hundreds of candidate biomarkers that must be subsequently verified in serum. However, despite the large numbers of putative biomarkers, only a small number of them are passed through the development and validation process into clinical practice, and their rate of introduction is declining. The first non-standard abbreviation (MS above is standard) must be footnoted the same as the abbreviation footnote, and MRM must be the first abbreviation in the list because it is the one footnoted. After that the order does not matter.Targeted proteomics using multiple reaction monitoring (MRM)1 is emerging as a technology that complements the discovery capabilities of shotgun strategies as well as an alternative powerful novel MS-based approach to measure a series of candidate biomarkers (1–7). Therefore, MRM is expected to provide a powerful high throughput platform for biomarker validation, although clinical validation of novel biomarkers has been traditionally relying on immunoassays (8, 9). MRM exploits the unique capabilities of triple quadrupoles (QQQ) MS for quantitative analysis. In MRM, the first and the third quadrupoles act as filters to specifically select predefined m/z values corresponding to the peptide precursor ion and specific fragment ion of the peptide, whereas the second quadrupole serves as collision cell. Several such transitions (precursor/fragment ion pairs) are monitored over time, yielding a set of chromatographic traces with retention time and signal intensity for a specific transition as coordinates. These measurements have been multiplexed to provide 30 or more specific assays in one run. Such methods are slowly gaining acceptance in the clinical laboratory for the routine measurement of endogenous metabolites (10) (e.g. in screening newborns for a panel of inborn errors of metabolism) some drugs (11) (e.g. immunosuppressants), and the component analysis of sugars (12).One of the profound challenges in clinical proteomics is the need to handle highly complex biological mixtures. This complexity presents unique analytical challenges that are further magnified with the use of clinical serum/plasma samples to search for novel biomarkers of human disease. The serum proteome is composed of tens of thousands of unique proteins, of which concentrations may exceed 10 orders of magnitude. Protein glycosylation, one of the most common post-translational modifications, generates tremendous diversity, complexity, and heterogeneity of gene products. It changes the biological and physical properties of proteins, which include functions as signals or ligands to control their distribution, antigenicity, metabolic fate, stability, and solubility. Protein glycosylation, in particular by N-linked glycans, is prevalent in proteins destined for extracellular environments. These include proteins on the extracellular side of the plasma membrane, secreted proteins, and proteins contained in body fluids (such as blood serum, cerebrospinal fluid, urine, breast milk, saliva, lung lavage fluid, or pancreatic juice). Considering that such body fluids are most easily accessible for diagnostic and therapeutic purposes, it is not surprising that many clinical biomarkers and therapeutic targets are glycoproteins. These include, for example, cancer antigen 125 (CA125) in ovarian cancer, human epidermal growth factor receptor 2 (Her2/neu) in breast cancer, and prostate-specific antigen (PSA) in prostate cancer. In addition, changes in the extent of glycosylation and the structure of N-glycans or O-glycans attached to proteins on the cell surface and in body fluids have been shown to correlate with cancer and other disease states, highlighting the clinical importance of this modification as an indicator or effector of pathologic mechanisms (13–16). Thus, clinical proteomic platforms should have capability to provide protein glycosylation information as well as sufficient analytical depth to reliably detect and quantify specific proteins with sufficient accuracy and throughput.To improve the detection limits to the required sensitivities, one needs to dramatically reduce the complexity of the sera samples. For focused glycoproteomics, several techniques using lectins or antibodies enabling the large-scale identification of glycoproteins have recently been developed (17–19). Notably, Zhang et al. reported a method for the selective isolation of peptides based on chemical oxidation of the carbohydrate moiety and subsequent conjugation to a solid support using hydrazide chemistry (20–26). However, it is not possible to provide any structural information about N-glycans because the MS analysis is performed on peptides of which N-glycans are removed preferentially by treating with peptide N-glycanase (PNGase). In 2007, we developed a method for rapid enrichment analysis of peptides bearing sialylated N-glycans on the MALDI-TOF-MS platform (27). The method involves highly selective oxidation of sialic acid residues of glycopeptides to elaborate terminal aldehyde group and subsequent enrichment by chemical ligation with a polymer reagent, namely, reverse glycoblotting technique inspired from an original concept of glycoblotting method (28). This method, in principle, is capable identifying both glycan and peptide sequences concurrently. Recently, Nilsson et al. reported that glycopeptides from human cerebrospinal fluid can be enriched on the basis of the same principle as the reverse glycoblotting protocol, and captured glycopeptides were analyzed with ESI FT-ICR MS (29). Because it is well known that sialic acids play important roles in various biological processes including cell differentiation, immune response, and oncogenesis (30–34), our attention has been directed toward feasibility of the reverse glycoblotting technique in quantitative analysis of the specific glycopeptides carrying sialic acid(s) by combining with multiplexed MRM-based MS. 相似文献
9.
CuZn-SOD deficiency causes ApoB degradation and induces hepatic lipid accumulation by impaired lipoprotein secretion in mice 总被引:3,自引:0,他引:3
Elevated hepatic reactive oxygen species play an important role in pathogenesis of liver diseases, such as alcohol-induced liver injury, hepatitis C virus infection, and nonalcoholic steatohepatitis. In the present study, we investigated and compared the hepatic lipid metabolisms of liver-specific Sod2 (superoxide dismutase 2) knock-out (Sod2 KO), Sod1 knock-out (Sod1 KO), and Sod1/liver-specific Sod2 double knock-out mice (double KO). We observed significant increases in lipid peroxidation and triglyceride (TG) in the liver of Sod1 KO and double KO mice but not in the liver of Sod2 KO mice. We also found that high fat diet enhanced fatty changes of the liver in Sod1 KO and double KO mice but not in Sod2 KO mice. These data indicated that CuZn-SOD deficiency caused lipid accumulation in the liver. To investigate the molecular mechanism of hepatic lipid accumulation in CuZn-SOD-deficient mice, we measured TG secretion rate from liver using Triton WR1339. We found significant decrease of TG secretion in CuZn-SOD-deficient mice. Furthermore, we observed marked degradation of apolipoprotein B (apoB) in the liver and plasma of CuZn-SOD-deficient mice, indicating that degradation of apoB impairs secretion of lipoprotein from the liver. Our data suggest that oxidative stress enhances hepatic lipid accumulation by impaired lipoprotein secretion due to the degradation of apoB in liver. 相似文献
10.