首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   6篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
1.
Nerve growth factor and neuronal cell death   总被引:4,自引:0,他引:4  
The regulation of neuronal cell death by the neuronotrophic factor, nerve growth factor (NGF), has been described during neural development and following injury to the nervous system. Also, reduced NGF activity has been reported for the aged NGF-responsive neurons of the sympathetic nervous system and cholinergic regions of the central nervous system (CNS) in aged rodents and man. Although there is some knowledge of the molecular structure of the NGF and its receptor, less is known as to the mechanism of action of NGF. Here, a possible role for NGF in the regulation of oxidant--antioxidant balance is discussed as part of a molecular explanation for the known effects of NGF on neuronal survival during development, after injury, and in the aged CNS.  相似文献   
2.
In a chimeric, voltage-dependent K+ channel (CHM), the valine at position 369 and the leucine at position 374 interact within the pore or P-region to regulate ion permeation and block. Here we show that the point mutation, CHM V369L, abolished channel function whereas previous experiments showed that CHM V369 and CHM V369I are functional. Coinjection of "lethal" CHM V369L cRNA with CHM L374V cRNA but not CHM cRNA generated functional heteromultimers. The whole-cell Rb+/K+ conductance ratio was 2.98 +/- 0.43 for CHM L374V and was reduced to 0.87 +/- 0.04 for the coexpressed CHM V369L and CHM L374V subunits. When single-channel currents were recorded, a single class of CHM V369L/CHM L374V heteromultimers was identified. This class was readily distinguishable from CHM L374V homomultimers by K+ conductance, gating, and blockade by internal tetraethylammonium. Coinjection experiments at various RNA ratios suggest that the CHM V369L/CHM L374V heteromultime, assuming it to be a tetramer, was composed of three CHM L374V subunits and one CHM V369L subunit. It appears that in the critical P-region of CHM position 369 may tolerate only one leucine.  相似文献   
3.
K+ and Rb+ conductances (GK+ and GRb+) were investigated in two delayed rectifier K+ channels (Kv2.1 and Kv3.1) cloned from rat brain and a chimera (CHM) of the two channels formed by replacing the putative pore region of Kv2.1 with that of Kv3.1. CHM displayed ion conduction properties which resembled Kv3.1. In CHM, GK+ was three times greater than that of Kv2.1 and GRb+/GK+ = 0.3 (compared with 1.5 and 0.7, respectively, in Kv2.1 and Kv3.1). A point mutation in CHM L374V, which restored 374 to its Kv2.1 identity, switched the K+/Rb+ conductance profiles so that GK+ was reduced fourfold, GRb+ was increased twofold, and GRb+/GK+ = 2.8. Quantitative restoration of the Kv2.1 K+/Rb+ profiles, however, required simultaneous point mutations at three nonadjacent residues suggesting the possibility of interactions between residues within the pore. The importance of leucine at position 374 was verified when reciprocal changes in K+/Rb+ conductances were produced by the mutation of V374L in Kv2.1 (GK+ was increased threefold, GRb+ was decreased threefold, and GRb+/GK+ = 0.2). We conclude that position 374 is responsible for differences in GK+ and GRb+ between Kv2.1 and Kv3.1 and, given its location near residues critical for block by internal tetraethylammonium, may be part of a cation binding site deep within the pore.  相似文献   
4.
5.
Oxidative stress has been shown to play a role in aging and in neurodegenerative disorders. Some of the consequences of oxidative stress are DNA base modifications, lipid peroxidation, and protein modifications such as formation of carbonyls and nitrotyrosine. These events may play a role in apoptosis, another factor in aging and neurodegeneration, in response to uncompensated oxidative stress. Bcl-2 is a mitochondrial protein that protects neurons from apoptotic stimuli including oxidative stress. Using immunohistochemistry and western blot analysis, here we show that Bcl-2 is up-regulated in the hippocampus and cerebellum of aged (24 months) Fisher 344 rats. Treatment with the free radical spin trap N-tert-butyl-alpha-phenylnitrone (PBN) effectively reverses this age-dependent Bcl-2 up-regulation indicating that this response is redox sensitive. This conclusion was further supported by inducing the same regional Bcl-2 up-regulation in young (3 months) Fisher 344 rats exposed to 100% normobaric O(2) for 48 h. Our results indicate that Bcl-2 expression is increased in the aged brain, possibly as a consequence of oxidative stress challenges. These results also illustrate the effectiveness of antioxidants in reversing age-related changes in the CNS and support further research to investigate their use in aging and in age-related neurodegenerative disorders.  相似文献   
6.
7.
8.
KCNQ2 and KCNQ3 subunits encode for the muscarinic-regulated current (I(KM)), a sub-threshold voltage-dependent K+ current regulating neuronal excitability. In this study, we have investigated the involvement of I(KM) in dopamine (DA) release from rat striatal synaptosomes evoked by elevated extracellular K+ concentrations ([K+]e) and by muscarinic receptor activation. [3H]dopamine ([3H]DA) release triggered by 9 mmol/L [K+]e was inhibited by the I(KM) activator retigabine (0.01-30 micromol/L; Emax = 54.80 +/- 3.85%; IC50 = 0.50 +/- 0.36 micromol/L). The I(KM) blockers tetraethylammonium (0.1-3 mmol/L) and XE-991 (0.1-30 micromol/L) enhanced K+-evoked [3H]DA release and prevented retigabine-induced inhibition of depolarization-evoked [3H]DA release. Retigabine-induced inhibition of K+-evoked [3H]DA release was also abolished by synaptosomal entrapment of blocking anti-KCNQ2 polyclonal antibodies, an effect prevented by antibody pre-absorption with the KCNQ2 immunizing peptide. Furthermore, the cholinergic agonist oxotremorine (OXO) (1-300 micromol/L) potentiated 9 mmol/L [K+]e-evoked [3H]DA release (Emax = 155 +/- 9.50%; EC50 = 25 +/- 1.80 micromol/L). OXO (100 micromol/L)-induced [3H]DA release enhancement was competitively inhibited by pirenzepine (1-10 nmol/L) and abolished by the M3-preferring antagonist 4-diphenylacetoxy N-methylpiperidine methiodide (1 micromol/L), but was unaffected by the M1-selective antagonist MT-7 (10-100 nmol/L) or by Pertussis toxin (1.5-3 microg/mL), which uncouples M2- and M4-mediated responses. Finally, OXO-induced potentiation of depolarization-induced [3H]DA release was not additive to that produced by XE-991 (10 micromol/L), was unaffected by retigabine (10 micromol/L), and was abolished by synaptosomal entrapment of anti-KCNQ2 antibodies. Collectively, these findings indicate that, in rat striatal nerve endings, I(KM) channels containing KCNQ2 subunits regulate depolarization-induced DA release and that I(KM) suppression is involved in the reinforcement of depolarization-induced DA release triggered by the activation of pre-synaptic muscarinic heteroreceptors.  相似文献   
9.
The evolutionary origin of human language and its neurobiological foundations has long been the object of intense scientific debate. Although a number of theories have been proposed, one particularly contentious model suggests that human language evolved from a manual gestural communication system in a common ape-human ancestor. Consistent with a gestural origins theory are data indicating that chimpanzees intentionally and referentially communicate via manual gestures, and the production of manual gestures, in conjunction with vocalizations, activates the chimpanzee Broca's area homologue--a region in the human brain that is critical for the planning and execution of language. However, it is not known if this activity observed in the chimpanzee Broca's area is the result of the chimpanzees producing manual communicative gestures, communicative sounds, or both. This information is critical for evaluating the theory that human language evolved from a strictly manual gestural system. To this end, we used positron emission tomography (PET) to examine the neural metabolic activity in the chimpanzee brain. We collected PET data in 4 subjects, all of whom produced manual communicative gestures. However, 2 of these subjects also produced so-called attention-getting vocalizations directed towards a human experimenter. Interestingly, only the two subjects that produced these attention-getting sounds showed greater mean metabolic activity in the Broca's area homologue as compared to a baseline scan. The two subjects that did not produce attention-getting sounds did not. These data contradict an exclusive "gestural origins" theory for they suggest that it is vocal signaling that selectively activates the Broca's area homologue in chimpanzees. In other words, the activity observed in the Broca's area homologue reflects the production of vocal signals by the chimpanzees, suggesting that this critical human language region was involved in vocal signaling in the common ancestor of both modern humans and chimpanzees.  相似文献   
10.
Changes in voltage-dependent gating represent a common pathogenetic mechanism for genetically inherited channelopathies, such as benign familial neonatal seizures or peripheral nerve hyperexcitability caused by mutations in neuronal K(v)7.2 channels. Mutation-induced changes in channel voltage dependence are most often inferred from macroscopic current measurements, a technique unable to provide a detailed assessment of the structural rearrangements underlying channel gating behavior; by contrast, gating currents directly measure voltage-sensor displacement during voltage-dependent gating. In this work, we describe macroscopic and gating current measurements, together with molecular modeling and molecular-dynamics simulations, from channels carrying mutations responsible for benign familial neonatal seizures and/or peripheral nerve hyperexcitability; K(v)7.4 channels, highly related to K(v)7.2 channels both functionally and structurally, were used for these experiments. The data obtained showed that mutations affecting charged residues located in the more distal portion of S(4) decrease the stability of the open state and the active voltage-sensing domain configuration but do not directly participate in voltage sensing, whereas mutations affecting a residue (R4) located more proximally in S(4) caused activation of gating-pore currents at depolarized potentials. These results reveal that distinct molecular mechanisms underlie the altered gating behavior of channels carrying disease-causing mutations at different voltage-sensing domain locations, thereby expanding our current view of the pathogenesis of neuronal hyperexcitability diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号