首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2021年   2篇
  2019年   3篇
  2014年   1篇
  2012年   1篇
  2006年   2篇
  2005年   1篇
  1984年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The aim of this study was to investigate the frequency, location and type of rpoB mutations in Mycobacterium tuberculosis isolated from patients in Belarus. Tuberculosis cases are increasing every year in Belarus. Moreover, resistance to anti-tuberculosis drugs, especially to rifampicine, has increased. In this study, 44 rifampicine-resistance M. tuberculosis clinical isolates (including multidrug-resistant isolates) were subjected to DNA sequencing analysis of the hypervariable region (hot-spot) of the rpoB gene originating from different geographical regions in Belarus. Sixteen different types of mutations were identified. The most common point mutations were in codons 510 (47.7%), 526 (45.5%), 523 (40.86%) and 531 (29.5%). Eleven isolates (27.7%) carried one mutation and 23 (52%), 7 (16%), 3 (7%) of isolates carried 2, 3 and 4 mutations, respectively. A characteristic, prominent finding of this study was high frequency of multiple mutations in different codons of the rpoB gene (27.7%) and also the detection of unusual types of mutations in the 510 codon, comprising CAG mutations (deletion or changing, to CTG, CAC or CAT). In our study, the change TTG in codon 531 was found in 92% of isolates and the change TGC in 8% of isolates. A TAC change in codon 526 was not found, but the GAC change was found in all isolates. Isolates of M. tuberculosis isolated in Belarus were characterized by the wide spectrum of the important mutations and might belong to the epidemic widespread clones.  相似文献   
2.
The yeast Rhodotorula glutinis (Rhodosporidium toruloides) is capable of accumulative transport of a wide variety of monosaccharides. Initial velocity studies of the uptake of 2-deoxy-D-glucose were consistent with the presence of at least two carriers for this sugar in the Rhodotorula plasma membrane. Non-linear regression analysis of the data returned maximum velocities of 0.8 +/- 0.2 and 2.0 +/- 0.2 nmol/min per mg (wet weight) and Km values of 18 +/- 4 and 120 +/- 20 microM, respectively, for the two carriers. Kinetic studies of D-glucose transport also revealed two carriers with maximum velocities of 1.1 +/- 0.4 and 2.4 +/- 0.4 nmol/min per mg (wet weight) and Km values of 12 +/- 3 and 55 +/- 12 microM. As expected, 2-deoxy-D-glucose was a competitive inhibitor of D-glucose transport. Ki values for the inhibition were 16 +/- 8 and 110 +/- 40 microM. These Ki values were in good agreement with the Km values for 2-deoxy-D-glucose transport. D-Xylose, the 5-deoxymethyl analog of D-glucose, appears to utilize the D-glucose/2-deoxy-D-glucose carriers. This pentose was observed to be a competitive inhibitor of D-glucose (Ki values = 0.14 +/- 0.06 and 5.6 +/- 1.6 mM) and 2-deoxy-D-glucose (Ki values = 0.15 +/- 0.07 and 4.6 +/- 1.2 mM) transport.  相似文献   
3.
4.
Glioblastoma multiforme (GBM) is a unique aggressive tumor and mostly develops in the brain, while rarely spreading out of the central nervous system. It is associated with a high mortality rate; despite tremendous efforts having been made for effective therapy, tumor recurrence occurs with high prevalence. To elucidate the mechanisms that lead to new drug discovery, animal models of tumor progression is one of the oldest and most beneficial approaches to not only investigating the aggressive nature of the tumor, but also improving preclinical research. It is also a useful tool for predicting novel therapies' effectiveness as well as side effects. However, there are concerns that must be considered, such as the heterogeneity of tumor, biological properties, pharma dynamic, and anatomic shapes of the models, which have to be similar to humans as much as possible. Although several methods and various species have been used for this approach, the real recapitulation of the human tumor has been left under discussion. The GBM model, which has been verified in this study, has been established by using the Rat C6 cell line. By exploiting bioinformatic tools, the similarities between aberrant gene expression and pathways have been predicted. In this regard, 610 common genes and a number of pathways have been detected. Moreover, while magnetic resonance imaging analysis enables us to compare tumor features between these two specious, pathological findings provides most of the human GBM characteristics. Therefore, the present study provides genomics, pathologic, and imaging evidence for showing the similarities between human and rat GBM models.  相似文献   
5.
Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric alpha-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty.  相似文献   
6.
Background:Zinc (Zn) is nutritionally essential trace element, and thus deficiency may severely affect human health. The results of cross-sectional studies indicate that micronutrient deficiencies are common in patients with tuberculosis. Our goal is to investigate whether Zn supplementation can increase the effects of anti-TB treatment or not.Methods:Patients with newly diagnosed tuberculosis were divided in to 2 groups. One group (n= 37) received capsule contains 50 mg of elemental zinc (as zinc sulfate) for 6 months every other day (micronutrient group) and Group II (n= 37) received placebo. Both groups received the same anti-tuberculosis treatment recommended by the WHO. Clinical examination, BMI, chest X-ray, direct sputum examination, assessment of serum zinc levels (by atomic absorption spectrophotometry), and biochemical markers serum concentration (by using an RA1000 AutoAnalyzer) were carried out before and after 2- and 6-months anti-tuberculosis treatment.Results:Plasma zinc concentrations in the micronutrient group was higher than placebo group After treatment. In the placebo group increasing in SGOT and SGPT concentrations were significantly higher than micronutrient group after 2 months of treatment (p< 0.05). The significant changes (p< 0.05) were observed on the serum levels of total protein, albumin. Alkaline phosphatase (ALP) levels, serum creatinine, uric acid and urea in groups were not significantly different.Conclusion:Zinc supplementation results in earlier sputum smear conversion in the micronutrient group during the first 6 weeks. Increased body weight and serum zinc and serum albumin and decrease in total protein was observed in the micronutrient group.Key Words: Anti-tuberculosis treatment, Pulmonary tuberculosis, Zinc  相似文献   
7.
Mesenchymal stromal cells (MSCs) can effectively contribute to tissue regeneration inside the inflammatory microenvironment mostly through modulating immune responses. MSC-derived extracellular vesicles (MSC-EVs) display immunoregulatory functions similar to parent cells. Interactions between MSC-EVs and immune cells make them an ideal therapeutic candidate for infectious, inflammatory, and autoimmune diseases. These properties of MSC-EVs have encouraged researchers to perform extensive studies on multiple factors that mediate MSC-EVs immunomodulatory effects. Investigation of proteins involved in the complex interplay of MSC-EVs and immune cells may help us to better understand their functions. Here, we performed a comprehensive proteomic analysis of MSC-EVs that was previously reported by ExoCarta database. A total of 938 proteins were identified as MSC-EV proteome using quantitative proteomics techniques. Kyoto Encyclopedia of Genes and Genomes analysis demonstrates that ECM–receptor interaction, focal adhesion, and disease-specific pathways are enriched in MSC-EVs. By detail analysis of proteins presence in immune system process, we found that expression of some cytokines, chemokines, and chemokine receptors such as IL10, HGF, LIF, CCL2, VEGFC, and CCL20, which leads to migration of MSC-EVs to injured sites, suppression of inflammation and promotion of regeneration in inflammatory and autoimmune diseases. Also, some chemoattractant proteins such as CXCL2, CXCL8, CXCL16, DEFA1, HERC5, and IFITM2 were found in MSC-EV proteome. They may actively recruit immune cells to the proximity of MSC or MSC-EVs, may result in boosting immune response under specific circumstances, and may have protective role in infectious diseases. In this review, we summarize available information about immunomodulation of MSC-EVs with particular emphasis on their proteomics analysis.  相似文献   
8.
Journal of Physiology and Biochemistry - Lipid metabolism rewiring in gastric adenocarcinoma (GA) pathogenesis is still not clearly elucidated. This study aimed to describe the role of lipid...  相似文献   
9.
10.
Tumor-derived exosomes (TEX) are known by their immune suppression effects as well as initiation mediators in cancer progression and metastasis. Meanwhile, they are appropriate sources to induce immunity against tumor cells, as consist of tumor specific and associated antigens. The aim of the current study is modifying TEX with microRNA miR-155, miR-142, and let-7i, to enhance their immune stimulation ability and induce potent dendritic cells (DC). For this, exosomes were isolated from mouse mammalian breast cancer cell line; 4T1, and subjected to miR-155, miR-142, and let-7i by electroporation. Immature DCs were generated from mouse bone marrow in the presence of interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF). To mature DCs, lipopolysaccharide (LPS), TEX, and modified TEX were used. The expression level of miRNAs and their target genes (IL-6, IL-17, IL-1b, TGFβ, SOCS1, KLRK1, IFNγ, and TLR4) was determined. TEX were nanovesicles with spheroid morphology which expressed CD81, CD63, and TSG101, as exosome markers, at protein level. MHCII, CD80, and CD40 as maturation markers were assessed by flow cytometry. Overexpression of miRNAs were confirmed in exosomes and mDCs. Up and downregulation of target genes confirmed the gene network in DC maturation. We found that Let-7i could efficiently induce the DC maturation, as well as miR-142 and miR-155 have enhancing effects. These findings reveal that the modified TEX would be a hopeful cell-free vaccine for the cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号