首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   30篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   8篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   8篇
  2013年   13篇
  2012年   22篇
  2011年   21篇
  2010年   14篇
  2009年   14篇
  2008年   14篇
  2007年   17篇
  2006年   11篇
  2005年   13篇
  2004年   6篇
  2003年   8篇
  2002年   5篇
  2001年   12篇
  2000年   11篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1992年   6篇
  1991年   3篇
  1990年   9篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   4篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
  1972年   5篇
  1971年   2篇
  1967年   3篇
  1965年   1篇
  1960年   1篇
  1948年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
1.
2.
3.
A full length cathepsin E (CTSE) cDNA clone was used to assign the corresponding gene to human chromosome region 1q31 by in situ hybridization. Southern blot analysis of DNA from three independent human x rodent somatic cell hybrids containing X;1 translocations confirmed the assignment of the CTSE gene to the distal region of the long arm of chromosome 1.  相似文献   
4.
5.
Goats and some sheep synthesize a juvenile hemoglobin, Hb C (alpha 2 beta C2), at birth and produce this hemoglobin exclusively during severe anemia. Sheep that synthesize this juvenile hemoglobin are of the A haplotype. Other sheep, belonging to a separate group, the B haplotype, do not synthesize hemoglobin C and during anemia continue to produce their adult hemoglobin. To understand the basis for this difference we have determined the structural organization of the beta- globin locus of B-type sheep by constructing and isolating overlapping genomic clones. These clones have allowed us to establish the linkage map 5' epsilon I-epsilon II-psi beta I-beta B-epsilon III-epsilon IV- psi beta II-beta F3' in this haplotype. Thus, B sheep lack four genes, including the BC gene, and have only eight genes, compared with the 12 found in the goat globin locus. The goat beta-globin locus is as follows: 5' epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A-epsilon V-epsilon VI-psi beta Y-beta F3'. Southern blot analysis of A-type sheep reveals that these animals have a beta- globin locus similar to that of goat, i.e., 12 globin genes. Thus, the beta-globin locus of B-haplotype sheep resembles that of cows and may have retained the duplicated locus of the ancestor of cows and sheep. Alternatively, the B-sheep locus arrangement may be the result of a deletion of a four-gene set from the triplicated locus.   相似文献   
6.
Pepsinogens (PGA) are the inactive precursors of pepsin, the major acid protease found in the stomach. The PGA gene family exhibits polymorphic variation in human populations that can either be demonstrated by electrophoretic analysis of the proteins or by analysis of the respective genes with cDNA probes. Here, we describe the interrelationships between the most common pepsinogen protein phenotypes and the corresponding pepsinogen haplotypes (A, B, and C) containing different combinations of the PGA3, PGA4, and PGA5 genes. We propose that this unusual genetic variation involving haplotypes that contain three, two, and one genes, respectively, is the result of molecular evolution by gene duplication.  相似文献   
7.
The genes coding for human pepsinogen (PGA3, PGA4, and PGA5) were assigned to chromosome region 11q13 by in situ hybridization. Previously we localized the PGA gene complex to a centromeric region of chromosome 11 (p11----q13) by Southern blot analysis of mouse-human somatic cell hybrids. Our in situ hybridization results confirm this assignment and further localize the genes to a smaller region on the long arm.  相似文献   
8.
Changes in the number and distribution of spermatozoa in the epididymis of the adult brown marsupial mouse were examined during July/August in mated and unmated males. The effects of mating on epididymal sperm populations were studied in 2 groups of males each mated 3 times and compared with the number and distribution of spermatozoa in the epididymides of 4 unmated control groups. One testis and epididymis were removed from each animal (hemicastration) either before or early in the mating season to provide information on initial sperm content and distribution. The contralateral side was removed later in the mating season to examine the effects of mating or sexual abstinence on epididymal sperm distribution. Epididymal sperm number peaked in both the distal caput and distal corpus/proximal cauda epididymidis in late July. The total number of spermatozoa, including those remaining in the testis, available to each male at the beginning of the mating season in early August was approximately 4.4 x 10(6)/side. Although recruitment of spermatozoa into the epididymis from the testis continued until mid-August, sperm content of the epididymis reached a peak of about 3.5 x 10(6)/epididymis in early August. At this time approximately 0.9 x 10(6) spermatozoa remained in the testis which had ceased spermatogenic activity. Throughout the mating season, epididymal spermatozoa were concentrated in the distal corpus/proximal cauda regions of the epididymis and were replenished by spermatozoa from upper regions of the duct. Relatively few spermatozoa were found in the distal cauda epididymidis, confirming a low sperm storage capacity in this region. A constant loss of spermatozoa from the epididymis, probably via spermatorrhoea, occurred throughout the mating season and very few spermatozoa remained in unmated males in late August before the annual male die-off. Mating studies showed that an average of 0.23 x 10(6) spermatozoa/epididymis were delivered per mating in this species, but the number of spermatozoa released at each ejaculation may be as few as 0.04 x 10(6)/epididymis when sperm loss via spermatorrhoea is taken into account. We suggest that the unusual structure of the cauda epididymidis, which has a very restricted sperm storage capacity, may function to limit the numbers of spermatozoa available at each ejaculation and thus conserve the dwindling epididymal sperm reserves in order to maximize the number of successful matings which are possible during the mating season.  相似文献   
9.
10.
Forty loci (16 polymorphic and 24 non-polymorphic) together with 23 cosmids isolated from a chromosome 11-specific library were used to construct a detailed genetic map of 11p13-11g13. The map was constructed by using a panel of 13 somatic cell hybrids that sub-divided this region into 19 intervals, a meiotic mapping panel of 33 multiple endocrine neoplasia type 1 (MEN1) families (134 affected and 269 unaffected members) and a mitotic mapping panel that was used to identify loss of heterozygosity in 38 MENI-associated tumours. The results defined the most likely order of the 16 loci as being: 11pter-D11S871(D11S288, D11S149)-11cen-CNTF-PGA-ROM1-D11S480-PYGM-SEA-D11S913-D115970-D11S97-D11S146-INT2-D11S971-D11S533-11gter. The meiotic mapping studies indicated that the most likely location of the MEN1 gene was in the interval flanked by PYGM and D11S97, and the results of mitotic mapping suggested a possible location of the MEN1 gene telomeric to SEA. Mapping studies of the gene encoding μ-calpain (CAPN1) located CAPN1 to llg13 and in the vicinity of the MEN1 locus. However, mutational analysis studies did not detect any germ-line CAPN1 DNA sequence abnormalities in 47 unrelated MEN1 patients and the results therefore exclude CAPN1 as the MEN1 gene. The detailed genetic map that has been constructed of the 11p13-11g13 region should facilitate the construction of a physical map and the identification of candidate genes for disease loci mapped to this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号