首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
A step‐by‐step strategy is reported for improving capacitance of supercapacitor electrodes by synthesizing nitrogen‐doped 2D Ti2CTx induced by polymeric carbon nitride (p‐C3N4), which simultaneously acts as a nitrogen source and intercalant. The NH2CN (cyanamide) can form p‐C3N4 on the surface of Ti2CTx nanosheets by a condensation reaction at 500–700 °C. The p‐C3N4 and Ti2CTx complexes are then heat‐treated to obtain nitrogen‐doped Ti2CTx nanosheets. The triazine‐based p‐C3N4 decomposes above 700 °C; thus, the nitrogen species can be surely doped into the internal carbon layer and/or defect site of Ti2CTx nanosheets at 900 °C. The extended interlayer distance and c‐lattice parameters (c‐LPs of 28.66 Å) of Ti2CTx prove that the p‐C3N4 grown between layers delaminate the nanosheets of Ti2CTx during the doping process. Moreover, 15.48% nitrogen doping in Ti2CTx improves the electrochemical performance and energy storage ability. Due to the synergetic effect of delaminated structures and heteroatom compositions, N‐doped Ti2CTx shows excellent characteristics as an electrochemical capacitor electrode, such as perfectly rectangular cyclic voltammetry results (CVs, R2 = 0.9999), high capacitance (327 F g?1 at 1 A g?1, increased by ≈140% over pristine‐Ti2CTx), and stable long cyclic performance (96.2% capacitance retention after 5000 cycles) at high current density (5 A g?1).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号