首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3858篇
  免费   210篇
  国内免费   3篇
  2022年   15篇
  2021年   28篇
  2020年   21篇
  2019年   22篇
  2018年   44篇
  2017年   39篇
  2016年   60篇
  2015年   86篇
  2014年   114篇
  2013年   273篇
  2012年   177篇
  2011年   206篇
  2010年   133篇
  2009年   139篇
  2008年   204篇
  2007年   220篇
  2006年   262篇
  2005年   238篇
  2004年   231篇
  2003年   230篇
  2002年   226篇
  2001年   56篇
  2000年   77篇
  1999年   58篇
  1998年   54篇
  1997年   51篇
  1996年   48篇
  1995年   60篇
  1994年   39篇
  1993年   52篇
  1992年   59篇
  1991年   41篇
  1990年   40篇
  1989年   36篇
  1988年   39篇
  1987年   36篇
  1986年   22篇
  1985年   41篇
  1984年   26篇
  1983年   31篇
  1982年   32篇
  1981年   29篇
  1980年   30篇
  1979年   17篇
  1978年   20篇
  1977年   17篇
  1976年   13篇
  1975年   14篇
  1974年   14篇
  1973年   15篇
排序方式: 共有4071条查询结果,搜索用时 15 毫秒
1.
Replication of X chromosomes in complete moles   总被引:1,自引:0,他引:1  
Summary DNA replication patterns of X chromosomes in complete hydatidiform moles were studied using cultured fibroblasts from three 46,XX moles resulting from duplication of a haploid sperm, and from a 46,XY mole originating from dispermy. Control cultures included skin fibroblasts from an adult woman and a female fetus as well as PB lymphocytes from an adult woman. Cultures were treated with 5-bromodeoxyuridine for the last 2–4h of the S phase, and the chromosome slides prepared were stained by the Hoechst 33258-Giemsa procedure. Each of the three XX moles studied revealed one early-replicating and one late-replicating X chromosomes, while the XY mole revealed one early-replicating X chromosome. DNA replication patterns of molar X chromosomes were similar to those of adult and fetal fibroblasts, but different from those in adult lymphocytes. These findings indicate that DNA replication kinetics of molar fibroblasts are tissue-specific rather than origin- or developmental-stage specific.  相似文献   
2.
 β-Amylase deficiency in various cultivars of rice was examined at the molecular level. Using an antibody against β-amylase purified from germinating seeds of rice, we were able to demonstrate the expression and organization of the β-amylase gene in normal and deficient cultivars. Although β-amylase is a starch-hydrolyzing enzyme, as is α-amylase, the β-amylase protein/gene is expressed differently from the α-amylase protein/gene; i.e. (1) β-amylase is synthesized only in aleurone cells, (2) the enzyme production in the embryo-less half-seeds is not under hormonal control. We identified some cultivars of rice that are deficient for β-amylase activity. We present new evidence that synthesis is blocked at the level of mRNA synthesis in the deficient cultivars. The usefulness of β-amylase as a crop trait is also discussed. Received: 8 May 1998 / Accepted: 5 June 1998  相似文献   
3.
Whole cells of Chlorella vulgaris and Clostridium butyricum were co-immobilized in 2% agar gel. NADP was suitable as an electron carrier. The rate of hydrogen evolution increased with increasing NADP concentration. The optimum conditions for hydrogen evolution were pH 7.0 and 37°C. The immobilized C. vulgaris-NADP-immobilized Cl. butyricum system continuously evolved hydrogen at a rate of 0.29–1.34 μmol/h per mg Chl for 6 days. On the other hand, the system without NADP evolved only a trace amount of hydrogen.  相似文献   
4.
5.
Aim To estimate the rate of adaptive radiation of endemic Hawaiian Bidens and to compare their diversification rates with those of other plants in Hawaii and elsewhere with rapid rates of radiation. Location Hawaii. Methods Fifty‐nine samples representing all 19 Hawaiian species, six Hawaiian subspecies, two Hawaiian hybrids and an additional two Central American and two African Bidens species had their DNA extracted, amplified by polymerase chain reaction and sequenced for four chloroplast and two nuclear loci, resulting in a total of approximately 5400 base pairs per individual. Internal transcribed spacer sequences for additional outgroup taxa, including 13 non‐Hawaiian Bidens, were obtained from GenBank. Phylogenetic relationships were assessed by maximum likelihood and Bayesian inference. The age of the most recent common ancestor and diversification rates of Hawaiian Bidens were estimated using the methods of previously published studies to allow for direct comparison with other studies. Calculations were made on a per‐unit‐area basis. Results We estimate the age of the Hawaiian clade to be 1.3–3.1 million years old, with an estimated diversification rate of 0.3–2.3 species/million years and 4.8 × 10?5 to 1.3 × 10?4 species Myr?1 km?2. Bidens species are found in Europe, Africa, Asia and North and South America, but the Hawaiian species have greater diversity of growth form, floral morphology, dispersal mode and habitat type than observed in the rest of the genus world‐wide. Despite this diversity, we found little genetic differentiation among the Hawaiian species. This is similar to the results from other molecular studies on Hawaiian plant taxa, including others with great morphological variability (e.g. silverswords, lobeliads and mints). Main conclusions On a per‐unit‐area basis, Hawaiian Bidens have among the highest rates of speciation for plant radiations documented to date. The rapid diversification within such a small area was probably facilitated by the habitat diversity of the Hawaiian Islands and the adaptive loss of dispersal potential. Our findings point to the need to consider the spatial context of diversification – specifically, the relative scale of habitable area, environmental heterogeneity and dispersal ability – to understand the rate and extent of adaptive radiation.  相似文献   
6.
7.
  1. Several animal species are known to distinguish between their own eggs and eggs of unrelated conspecifics. However, the cues involved in this discrimination are often unknown. These cues were studied using the predatory mite Gynaeseius liturivorus Ehara.
  2. Adult females of these predatory mites oviposit in clusters and avoid oviposition close to eggs laid by other females, resulting in reduced cannibalism between offspring. Because predatory mites are blind, it was tested whether volatiles of eggs were used as a cue for egg recognition.
  3. Adult female predatory mites were offered volatile cues of their own eggs and of unrelated conspecific eggs, and females were prevented from contacting the eggs. Predatory mites oviposited closer to their own eggs than to unrelated eggs. This preference was observed even when one own and one unrelated egg were offered as a volatile source.
  4. These results suggest that adult female predatory mites can determine kinship using volatiles released from the eggs.
  相似文献   
8.
A respiration-deficient (RD) mutant was isolated from the petite-negative, salt-tolerant yeast Zygosaccharomyces rouxii. One strain among sixteen glycerol-non-utilizing mutants exhibited vigorous liberation of CO2 but no uptake of O2. Furthermore, this strain lacked cytochrome aa3 and had a reduced level of cytochrome b. The few mitochondria found in cells of this strain contained few or no cristae. Salt tolerance and intracellular accumulation of glycerol by the RD strain were almost equal to that of the wild-type strain in media containing NaCl up to 2.5 M. In media with more than 3 M NaCl, the growth of the RD mutant was retarded and the intracellular accumulation of glycerol was depressed in spite of ample production.  相似文献   
9.
A feruloylated arabinoxylan trisaccharide inhibited IAA-stimulatedelongation of cells in rice lamina joints. The de-esterifiedcompound, an arabinoxylan trisaccharide, did not inhibit suchelongation. This is the first report that feruloylated arabinoxylanfragments are involved in the regulation of plant growth. (Received September 18, 1991; Accepted January 13, 1992)  相似文献   
10.
The N-terminal amino acid sequence of sweet potato cytochromec oxidase subunit II polypeptide was determined. Comparisonsbetween the sequence and amino acid sequences deduced from thenucleotide sequences of other higher plant subunit II genesindicate a post-translational clevage of N-terminal extensionpart. 1Present address: Institute of Low Temperature Science, HokkaidoUniversity, Sapporo, 060 Japan. (Received June 13, 1989; Accepted September 8, 1989)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号