首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   6篇
  2022年   1篇
  2020年   1篇
  2018年   2篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   7篇
  2011年   13篇
  2010年   3篇
  2009年   1篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1986年   7篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1967年   4篇
排序方式: 共有161条查询结果,搜索用时 312 毫秒
1.
The aspartase gene (aspA) of Pseudomonas fluorescens was cloned and the nucleotide sequence of the 2,066-base-pair DNA fragment containing the aspA gene was determined. The amino acid sequence of the protein deduced from the nucleotide sequence was confirmed by N- and C-terminal sequence analysis of the purified enzyme protein. The deduced amino acid composition also fitted the previous amino acid analysis results well (Takagi et al. (1984) J. Biochem. 96, 545-552). These results indicate that aspartase of P. fluorescens consists of four identical subunits with a molecular weight of 50,859, composed of 472 amino acid residues. The coding sequence of the gene was preceded by a potential Shine-Dalgarno sequence and by a few promoter-like structures. Following the stop codon there was a structure which is reminiscent of the Escherichia coli rho-independent terminator. The G + C content of the coding sequence was found to be 62.3%. Inspection of the codon usage for the aspA gene revealed as high as 80.0% preference for G or C at the third codon position. The deduced amino acid sequence was 56.3% homologous with that of the enzyme of E. coli W (Takagi et al. (1985) Nucl. Acids Res. 13, 2063-2074). Cys-140 and Cys-430 of the E. coli enzyme, which had been assigned as functionally essential (Ida & Tokushige (1985) J. Biochem. 98, 793-797), were substituted by Ala-140 and Ala-431, respectively, in the P. fluorescens enzyme.  相似文献   
2.
Effects of temperature and monovalent cations on the activity and the quaternary structure of tryptophanase of Escherichia coli were studied. The conversion of the apoenzyme into the active holoenzyme was attained at 30 degrees C in Tris-HCl buffer (pH 8.0) containing pyridoxal-P and K+, while no conversion occurred at 5 degrees C. The active holoenzyme thus formed was stable even at 5 degrees C, as long as the cation was present. When K+ was absent, however, the active enzyme gradually lost the activity upon chilling to 5 degrees C. The HPLC gel filtration analysis of the active holoenzyme and the low temperature-inactivated enzyme species revealed that the tetrameric holoenzyme dissociated into the dimeric apoenzyme concomitant with the low temperature-induced inactivation at 5 degrees C. The results of HPLC experiments together with other available evidence also suggest that the inactive tetrameric holoenzyme was first formed from the dimeric apoenzyme and pyridoxal-P prior to the formation of the active holoenzyme and that the cation promoted the conversion of the inactive holoenzyme into the active holoenzyme rather than being involved in the conversion of the apoenzyme and pyridoxal-P into the holoenzyme. Among various cations tested for the above effects, NH4+ exhibited the largest effect and K+ the second.  相似文献   
3.
4.
The active species of aspartase from Escherichia coli is further 3-5 fold activated upon limited proteolysis with trypsin releasing carboxy-terminal peptides as reported previously (N. Yumoto, M. Tokushige, and R. Hayashi. Biochim. Biophys. Acta, 616, 319 (1980) ). Survey of the protease specificity for the activation revealed that subtilisin BPN' and several other proteases having far broader substrate specificity than trypsin also activated the enzyme. The results of sequence analyses revealed that subtilisin BPN' cleaved mainly the serylarginine bond near the carboxy-terminal and released an octapeptide, while trypsin cleaved mainly the arginyltyrosine bond which is just next to the subtilisin cleavage site. These results suggest that the protease-mediated activation does not necessarily require a site-specific peptidyl cleavage, but the cleavage of any bond within a certain region centered at arginine, the eighth residue from the carboxy-terminal, is sufficient.  相似文献   
5.
The biodegradative threonine deaminase from Escherichia coli is activated allosterically by AMP. To identify the residues interacting with the phosphate group of AMP at the binding site, we used the affinity labeling reagent, adenosine diphosphopyridoxal (AP2-PL). In the absence of AMP, the enzyme formed the Schiff base with AP2-PL and Scatchard plot analysis showed a biphasic pattern, the respective Kd values for the high- and low-affinity binding phases being 20 and 110 microM. The former value is comparable to the Kd value of the enzyme for AMP. In the presence of AMP, the Schiff base formation was greatly reduced. Although the maximal activating effect of adenosine diphosphopyridoxine, a non-reactive derivative of AP2-PL, was about 13% of that of AMP, the half-saturation concentration was almost the same. These findings suggest that AP2-PL specifically labeled the lysyl residue(s) at the AMP-binding site of the enzyme. To identify the labeled residue(s), we reduced the modified enzyme with sodium borohydride, then cleaved it with cyanogen bromide and Achromobacter lyticus protease I. Reverse-phase HPLC was used to isolate two labeled peptides from the digest. Their amino acid compositions and sequences showed that Lys-111 and Lys-113 were labeled. We conclude that these two lysyl residues are located around the phosphate group of AMP at the allosteric regulation site of the enzyme.  相似文献   
6.
NAD-linked glutamate dehydrogeanse [EC 1.4.1.2] was detected together with NADP-linked glutamate dehydrogenase [EC 1.4.1.4] and aspartase [EC 4.3.1.1] in Pseudomonas fluorescens cells. The three enzymes were distinctly separated by DEAE-Sephadex column chromatography. The NAD-linked enzyme was extremely thermolabile and was rapidly inactivated even at temperatures as low as 35--40 degrees C. The combined addition of NAD+ and glutamate, however, effectively stabilized the enzyme. The glutamate saturation profile of the NAD-linked enzyme exhibited cooperativity with a Hill coefficient (n) of 1.4. ATP inhibited the enzyme in an allosteric manner, increasing the n value to 2.2. These results suggest a novel type of metabolic regulation shared by the three enzymes in the biosynthesis and catabolism of amino acids.  相似文献   
7.
Aspartase of Escherichia coli was inhibited in a competitive manner by S-2,3-dicarboxyazirdine (DCAZ), an antibacterial substance against Aeromonas salmonesida. The inhibition constant (Ki) was 55 microM, which was as low as less than one tenth that of the Km value for the substrate, L-aspartate. In view of the fact that both aspartase and fumarase (J. Greenhut et al. (1985) J. Biol. Chem. 260, 6684-6686) were inhibited by DCAZ in competitive manners, common features of the reaction mechanism of the two enzymes were discussed.  相似文献   
8.
An incubation experiment was conducted to estimate redox buffer capacity of “water-rock-microbe” interaction systems in sedimentary rocks. The water chemistry, microbial growth and community structure were analyzed during the incubations. The dissolved oxygen (DO) concentrations and oxidation-reduction potential (ORP) values decreased notably in the presence of active microorganisms, whereas abiotic reactions did not lead to reducing conditions during incubation. The change in microbial community structure suggests that nitrate-reducing and sulfate-reducing bacteria played an important role in reduction of water by using lignite-derived organic matter. These results show that the microbial role is extremely important for the redox buffering capacity in sedimentary rock environments.  相似文献   
9.
10.
We raised monoclonal antibodies against senile plaque (SP) amyloid and obtained a clone 9D2, which labeled amyloid fibrils in SPs and reacted with approximately 50/100 kDa polypeptides in Alzheimer's disease (AD) brains. We purified the 9D2 antigens and cloned a cDNA encoding its precursor, which was a novel type II transmembrane protein specifically expressed in neurons. This precursor harbored three collagen-like Gly-X-Y repeat motifs and was partially homologous to collagen type XIII. Thus, we named the 9D2 antigen as CLAC (collagen-like Alzheimer amyloid plaque component), and its precursor as CLAC-P/collagen type XXV. The extracellular domain of CLAC-P/collagen type XXV was secreted by furin convertase, and the N-terminus of CLAC deposited in AD brains was pyroglutamate modified. Both secreted and membrane-tethered forms of CLAC-P/collagen type XXV specifically bound to fibrillized Abeta, implicating these proteins in beta-amyloidogenesis and neuronal degeneration in AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号