This dataset records the occurrence and inventory of molluscan fauna on Gueishan Island, the only active volcanic island in Taiwan, based on the literature survey and field investigation conducted between 2011 and 2012. The literature review involved seven studies published from 1934 to 2003, which collectively reported 112 species from 61 genera and 37 families of Mollusca on Gueishan Island. Through our field investigation, we identified 34 species from 28 genera and 23 families. Fourteen of these species were new records on Gueishan Island: Liolophura japonica, Lottia luchuana, Nerita costata, Nerita rumphii, Diplommatina suganikeiensis, Littoraria undulata, Solenomphala taiwanensis, Assiminea sp., Siphonaria laciniosa, Laevapex nipponica, Carychium hachijoensis, Succinea erythrophana, Zaptyx crassilamellata, and Allopeas pyrgula. In Total, there are 126 species from 71 genera and 45 families of Mollusca on Gueishan Island. These data have been published through GBIF [http://taibif.org.tw/ipt/resource.do?r=gueishan_island] and integrated into the Taiwan Malacofauna Database (http://shell.sinica.edu.tw/). 相似文献
Circulating matrix metalloproteinase (MMP)-2, -3 and -9 are well recognized in predicting cardiovascular outcome in coronary artery disease (CAD), but their risks for chronic kidney disease (CKD) are lacking. Therefore, the present study aimed to investigate whether circulating MMP levels could independently predict future kidney disease progression in non-diabetic CAD patients.
Methods
The prospective study enrolled 251 non-diabetic subjects referred for coronary angiography, containing normal coronary artery (n = 30) and CAD with insignificant (n = 95) and significant (n = 126) stenosis. Estimated glomerular filtration rate (eGFR) was calculated using the CKD-EPI formula. eGFR decline rate was calculated and the primary endpoint was a decline in eGFR over 25% from baseline.
Results
The eGFR decline rate (ml/min/1.73 m2 per year) in patients with CAD (1.22 [−1.27, 1.05]) was greater than that in those with normal coronary artery (0.21 [−2.63, 0.47], P<0.01). The circulating MMP-2, -3 and -9 were independently associated with faster eGFR decline among CAD patients. The mean follow-up period was 8.5±2.4 years, and 39 patients reached the primary endpoint. In multivariate Cox regression model, the adjusted hazard ratios of MMP-2 ≥861 ng/mL, MMP-3 ≥227 ng/mL and MMP-9 ≥49 ng/mL for predicting CKD progression were 2.47 (95% CI, 1.21 to 5.07), 2.15 (1.12 to 4.18), and 4.71 (2.14 to 10.4), respectively. While added to a model of conventional risk factors and baseline eGFR, MMP-2, -3 and -9 further significantly improved the model predictability for CKD progression (c statistic, 0.817). In the sensitivity analyses, the results were similar no matter if we changed the endpoints of a decline of >20% in eGFR from baseline or final eGFR < 60 mL/min/1.73 m2.
Conclusion
Circulating MMP-2, -3 and -9 are independently associated with kidney disease progression in non-diabetic CAD patients and add incremental predictive power to conventional risk factors. 相似文献
The biosynthesis of glycoconjugates requires the relevant glycosyltransferases and nucleotide sugars that can act as donors. Given the biological importance of posttranslational glycosylation, a facile, robust and cost-effective strategy for the synthesis of nucleotide sugars is highly desirable. In this study, we demonstrate the synthesis of nucleotide sugars from corresponding monosaccharides in a highly efficient manner via metabolic engineering, using an enzymatic approach. This method exploits l-fucokinase/guanosine 5'-diphosphate (GDP)-l-fucose (L-Fuc) pyrophosphorylase (FKP), a bifunctional enzyme isolated from Bacteroides fragilis 9343, which converts l-Fuc into GDP-L-Fuc via an L-Fuc-1-phosphate intermediate. Because L-Fuc and d-arabinose (D-Ara) are structurally similar, it is assumed that the biosynthesis of GDP-D-Ara in a recombinant Saccharomyces cerevisiae strain harboring the FKP gene can occur through a mechanism akin to that of GDP-L-Fuc via the salvage pathway. Thus, we reasoned that by exogenously supplying different monosaccharides structurally related to L-Fuc, it should be possible to produce the corresponding nucleotide sugars with this recombinant yeast strain, regardless of internal acquisition of nucleotide sugars through expression of additive enzymes in the de novo pathway. 相似文献
Fucose (Fuc)-containing glycoconjugates play important roles in numerous physiological and pathological processes. Given the biological importance of post-translational glycosylation, a specific and robust strategy for the identification of fucosylated glycoproteins is highly desirable. In this study, we demonstrate an alternative way of labeling of fucosylated structures by metabolic engineering, using a chemoenzymatic approach. In this approach, the activities of Bacteroides fragilis 9343 L-fucokinase/guanosine-5'-diphosphate-Fuc pyrophosphorylase and human α1,3-fucosyltransferase 9 are combined in a Namalwa cellular model. Interestingly, this system could be applied to labeling of alkyne-modified fucosylated glycoproteins. N-Glycan site mapping and identification were done using an in vitro selective chemical ligation reaction and isotope-coded glycosylation site-specific tagging, subsequent to liquid chromatography-tandem mass spectrometry analysis. This work illustrates the use of a click chemistry-based strategy combined with a glycoproteomic technique to get further insight into the pattern of Fuc-mediated biological processes and functions. 相似文献
Human gut microbiome has an essential role in human health and disease. Although the major dominant microbiota within individuals have been reported, the change of gut microbiome caused by external factors, such as antibiotic use and bowel cleansing, remains unclear. We conducted this study to investigate the change of gut microbiome in overweight male adults after bowel preparation, where none of the participants had been diagnosed with any systemic diseases.
Methods
A total of 20 overweight, male Taiwanese adults were recruited, and all participants were omnivorous. The participants provided fecal samples and blood samples at three time points: prior to bowel preparation, 7 days after colonoscopy, and 28 days after colonoscopy. The microbiota composition in fecal samples was analyzed using 16S ribosome RNA gene amplicon sequencing.
Results
Our results demonstrated that the relative abundance of the most dominant bacteria hardly changed from prior to bowel preparation to 28 days after colonoscopy. Using the ratio of Prevotella to the sum of Prevotella and Bacteroides in the fecal samples at baseline, the participants were separated into two groups. The fecal samples of the Type 1 group was Bacteroides-dominant, and that of the Type 2 group was Prevotella-dominant with a noticeable presence Bacteroides. Bulleidia appears more in the Type 1 fecal samples, while Akkermensia appears more in the Type 2 fecal samples. Of each type, the gut microbial diversity differed slightly among the three collection times. Additionally, the Type 2 fecal microbiota was temporarily susceptible to bowel cleansing. Predictive functional analysis of microbial community reveals that their activities for the mineral absorption metabolism and arachidonic acid metabolism differed significantly between the two types. Depending on their fecal type, the variance of triglycerides and C-reactive protein also differed between the two types of participants.
Conclusions
Depending upon the fecal type, the microbial diversity and the predictive functional modules of microbial community differed significantly after bowel preparation. In addition, blood biochemical markers presented somewhat associated with fecal type. Therefore, our results might provide some insights as to how knowledge of the microbial community could be used to promote health through personalized clinical treatment.
Highlights? Global levels of histone acetylation change in response to pHi alterations ? Histone deacetylation and acetate transport through H+-coupled MCTs regulates pHi ? Proliferation of T cells results in increases in pHi and global histone acetylation ? HDAC and MCT inhibitors decrease pHi相似文献
Infectious bursal disease virus (IBDV) causes a highly contagious disease in young chicks and leads to significant economic losses in the poultry industry. The capsid protein VP2 of IBDV plays an important role in virus binding and cell recognition. VP2 forms a subviral particle (SVP) with immunogenicity similar to that of the IBDV capsid. In the present study, we first showed that SVP could inhibit IBDV infection to an IBDV-susceptible cell line, DF-1 cells, in a dose-dependent manner. Second, the localizations of the SVP on the surface of DF-1 cells were confirmed by fluorescence microscopy, and the specific binding of the SVP to DF-1 cells occurred in a dose-dependent manner. Furthermore, the attachment of SVP to DF-1 cells was inhibited by an SVP-induced neutralizing monoclonal antibody against IBDV but not by denatured-VP2-induced polyclonal antibodies. Third, the cellular factors in DF-1 cells involved in the attachment of SVP were purified by affinity chromatography using SVP bound on the immobilized Ni(2+) ions. A dominant factor was identified as being chicken heat shock protein 90 (Hsp90) (cHsp90) by mass spectrometry. Results of biotinylation experiments and indirect fluorescence assays indicated that cHsp90 is located on the surface of DF-1 cells. Virus overlay protein binding assays and far-Western assays also concluded that cHsp90 interacts with IBDV and SVP, respectively. Finally, both Hsp90 and anti-Hsp90 can inhibit the infection of DF-1 cells by IBDV. Taken together, for the first time, our results suggest that cHsp90 is part of the putative cellular receptor complex essential for IBDV entry into DF-1 cells. 相似文献
This study is to investigate the change of morphology of the meiotic spindle and the extent of zona hardening relating to the morphological survival and developmental competence of thawed oocytes. Four- to 8-week-old female mice (C57BL/6) primed with an intraperitoneal injection of pregnant mare's serum gonadotropin and human chorionic gonadotropin. Cryopreserved oocytes using two protocols: vitrificaton using ethylene glycol (EG) and slow freezing using propanediol (PROH). The freezing oocytes were thawed and were fertilized and subsequently cultured in vitro. Spindle/chromosome imagery, dissolution of zona pellucida, and post-thawing survival and development were comparable between two groups. The vitrification cryopreservation method proved to be better than the slow-freezing protocol when comparing the frequency of normal-shaped spindle development post-thawing. The difference in the time required for the dissolution of the zona pellucida under treatment of pronase that was determined to exist between the two cryopreservation methods was statistically significant (P<0.005). The survival rate of post-thawed mature oocytes was significantly greater for the vitrification group than it was for the slow-freezing cryopreservation group (P=0.005). The vitrification cryopreservation of mature murine oocytes would appear to be more satisfactory than the slow controlled-rate freezing method as regards the post-thawing oocyte survival and also the incidence of the normal spindle apparatus in the ooplasm. 相似文献
The ARFP/F protein is synthesized from the +1 reading frame of the hepatitis C virus (HCV) core protein gene. The function
of this protein remains unknown. To study the function of the HCV ARFP/F protein, we have conducted the yeast two-hybrid screening
experiment to identify cellular proteins that may interact with the ARFP/F protein. MM-1, a c-Myc interacting protein, was
found to interact with HCV ARFP/F protein in this experiment. The physical interaction between ARFP/F and MM-1 proteins was
further confirmed by the GST pull-down assay, the co-immunoprecipitation assay and confocal microscopy. As MM-1 can inhibit
the gene transactivation activity of c-Myc, we have conducted further analysis to examine the possible effect of the ARFP/F
protein on c-Myc. Our results indicate that the HCV ARFP/F protein can enhance the gene trans-activation activity of c-Myc,
apparently by antagonizing the inhibitory effect of MM-1. The ability of the ARFP/F protein to enhance the activity of c-Myc
raises the possibility that ARFP/F protein might play a role in hepatocellular transformation in HCV patients.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献