首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
  2021年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1957年   2篇
  1951年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
2.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
3.
Non-visual arrestins scaffold mitogen-activated protein kinase (MAPK) cascades. The c-Jun N-terminal kinases (JNKs) are members of MAPK family. Arrestin-3 has been shown to enhance the activation of JNK3, which is expressed mainly in neurons, heart, and testes, in contrast to ubiquitous JNK1 and JNK2. Although all JNKs are activated by MKK4 and MKK7, both of which bind arrestin-3, the ability of arrestin-3 to facilitate the activation of JNK1 and JNK2 has never been reported. Using purified proteins we found that arrestin-3 directly binds JNK1α1 and JNK2α2, interacting with the latter comparably to JNK3α2. Phosphorylation of purified JNK1α1 and JNK2α2 by MKK4 or MKK7 is increased by arrestin-3. Endogenous arrestin-3 interacted with endogenous JNK1/2 in different cell types. Arrestin-3 also enhanced phosphorylation of endogenous JNK1/2 in intact cells upon expression of upstream kinases ASK1, MKK4, or MKK7. We observed a biphasic effect of arrestin-3 concentrations on phosphorylation of JNK1α1 and JNK2α2 both in vitro and in vivo. Thus, arrestin-3 acts as a scaffold, facilitating JNK1α1 and JNK2α2 phosphorylation by MKK4 and MKK7 via bringing JNKs and their activators together. The data suggest that arrestin-3 modulates the activity of ubiquitous JNK1 and JNK2 in non-neuronal cells, impacting the signaling pathway that regulates their proliferation and survival.  相似文献   
4.
5.
Eukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca(2+) and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated. To investigate the mechanism of autophosphorylation, human eEF-2K was coexpressed with λ-phosphatase and purified from bacteria in a three-step protocol using a CaM affinity column. Purified eEF-2K was induced to autophosphorylate by incubation with Ca(2+)/CaM in the presence of MgATP. Analyzing tryptic or chymotryptic peptides by mass spectrometry monitored the autophosphorylation over 0-180 min. The following five major autophosphorylation sites were identified: Thr-348, Thr-353, Ser-445, Ser-474, and Ser-500. In the presence of Ca(2+)/CaM, robust phosphorylation of Thr-348 occurs within seconds of addition of MgATP. Mutagenesis studies suggest that phosphorylation of Thr-348 is required for substrate (eEF-2 or a peptide substrate) phosphorylation, but not self-phosphorylation. Phosphorylation of Ser-500 lags behind the phosphorylation of Thr-348 and is associated with the Ca(2+)-independent activity of eEF-2K. Mutation of Ser-500 to Asp, but not Ala, renders eEF-2K Ca(2+)-independent. Surprisingly, this Ca(2+)-independent activity requires the presence of CaM.  相似文献   
6.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   
7.
8.
The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.  相似文献   
9.
Recently, a novel mode of sulphur oxidation was described in marine sediments, in which sulphide oxidation in deeper anoxic layers was electrically coupled to oxygen reduction at the sediment surface. Subsequent experimental evidence identified that long filamentous bacteria belonging to the family Desulfobulbaceae likely mediated the electron transport across the centimetre-scale distances. Such long-range electron transfer challenges some long-held views in microbial ecology and could have profound implications for sulphur cycling in marine sediments. But, so far, this process of electrogenic sulphur oxidation has been documented only in laboratory experiments and so its imprint on the seafloor remains unknown. Here we show that the geochemical signature of electrogenic sulphur oxidation occurs in a variety of coastal sediment environments, including a salt marsh, a seasonally hypoxic basin, and a subtidal coastal mud plain. In all cases, electrogenic sulphur oxidation was detected together with an abundance of Desulfobulbaceae filaments. Complementary laboratory experiments in intertidal sands demonstrated that mechanical disturbance by bioturbating fauna destroys the electrogenic sulphur oxidation signal. A survey of published geochemical data and 16S rRNA gene sequences identified that electrogenic sulphide oxidation is likely present in a variety of marine sediments with high sulphide generation and restricted bioturbation, such as mangrove swamps, aquaculture areas, seasonally hypoxic basins, cold sulphide seeps and possibly hydrothermal vent environments. This study shows for the first time that electrogenic sulphur oxidation occurs in a wide range of marine sediments and that bioturbation may exert a dominant control on its natural distribution.  相似文献   
10.
The extracellular signal-regulated protein kinase, ERK2, fully activated by phosphorylation and without a His(6) tag, shows little tendency to dimerize with or without either calcium or magnesium ions when analyzed by light scattering or analytical ultracentrifugation. Light scattering shows that ~90% of ERK2 is monomeric. Sedimentation equilibrium data (obtained at 4.8-11.2 μM ERK2) with or without magnesium (10 mM) are well described by an ideal one-component model with a fitted molar mass of 40180 ± 240 Da (without Mg(2+) ions) or 41290 ± 330 Da (with Mg(2+) ions). These values, close to the sequence-derived mass of 41711 Da, indicate that no significant dimerization of ERK2 occurs in solution. Analysis of sedimentation velocity data for a 15 μM solution of ERK2 with an enhanced van Holde-Weischet method determined the sedimentation coefficient (s) to be ~3.22 S for activated ERK2 with or without 10 mM MgCl(2). The frictional coefficient ratio (f/f(0)) of 1.28 calculated from the sedimentation velocity and equilibrium data is close to that expected for an ~42 kDa globular protein. The translational diffusion coefficient of ~8.3 × 10(-7) cm(2) s(-1) calculated from the experimentally determined molar mass and sedimentation coefficient agrees with the value determined by dynamic light scattering in the absence and presence of calcium or magnesium ions and a value determined by NMR spectrometry. ERK2 has been proposed to homodimerize and bind only to cytoplasmic but not nuclear proteins [Casar, B., et al. (2008) Mol. Cell 31, 708-721]. Our light scattering data show, however, that ERK2 forms a strong 1:1 complex of ~57 kDa with the cytoplasmic scaffold protein PEA-15. Thus, ERK2 binds PEA-15 as a monomer. Our data provide strong evidence that ERK2 is monomeric under physiological conditions. Analysis of the same ERK2 construct with the nonphysiological His(6) tag shows substantial dimerization under the same ionic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号