首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1957年   2篇
  1951年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Aluminum is an abundant metal in the earth’s crust that turns out to be toxic in acidic environments. Many plants are affected by the presence of aluminum at the whole plant level, at the organ level, and at the cellular level. Tobacco as a cash crop (Nicotiana tabacum L.) is a widely cultivated plant worldwide and is also a good model organism for research. Although there are many articles on Al-phytotoxicity in the literature, reviews on a single species that are economically and scientifically important are limited. In this article, we not only provide the biology associated with tobacco Al-toxicity, but also some essential information regarding the effects of this metal on other plant species (even animals). This review provides information on aluminum localization and uptake process by different staining techniques, as well as the effects of its toxicity at different compartment levels and the physiological consequences derived from them. In addition, molecular studies in recent years have reported specific responses to Al toxicity, such as overexpression of various protective proteins. Besides, this review discusses data on various organelle-based responses, cell death, and other mechanisms, data on tobacco plants and other kingdoms relevant to these studies.  相似文献   
2.
3.

Background

The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results

In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions

More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.  相似文献   
4.
5.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   
6.
7.
Recently, subfraction analysis of serum low density lipoprotein (LDL) is considered to be a better predictor of the risk of coronary heart disease (CHD) compared to the other lipid parameters. The aim of this study was to examine the effects of the HDL-associated Taq1B (rs708272) SNP of cholesterol ester transfer protein (CETP) gene on serum LDL subfractions in patients with CHD. Serum lipid levels were measured enzymatically and LDL subfraction analysis was carried out by the Lipoprint System (Quantimetrix, CA, USA). The CETP rs708272 SNP was studied in 66 healthy controls and 79 patients with CHD receiving statin therapy by the PCR–RFLP technique. The CHD patients had elevated antiatherogenic LDL-1 subfraction (p = 0.042), decreased atherogenic IDL-C subfraction (p = 0.023), and total IDL (p = 0.030) levels compared to the healthy controls. The CETP rs708272 Taq1B minor B2 allele was associated with increased levels of antiatherogenic LDL-1 (B2: 0.40 ± 0.20 vs. B1B1: 0.25 ± 0.08, p = 0.004) and large-LDL (LDL 1–2) subfractions in the CHD group (B2 allele: 0.68 ± 0.41 vs. B1B1: 0.42 ± 0.20; p < 0.05), while it was associated with reduced levels of the large-LDL subfraction in healthy subjects (B2 allele: 0.29 ± 0.14 vs. B1B1: 0.54 ± 0.24; p = 0.017). However, there was no statistically significant association between the CETP rs708272 SNP and small dense LDL subfraction (LDL 3–7) and lipoprotein levels (p > 0.05). Our findings have indicated that the CETP rs708272 SNP together with statin therapy may show a favorable effect on antiatherogenic LDL-1 and large-LDL subfractions in CHD patients with an atherogenic effect on large-LDL subfraction in healthy subjects. Based on these results, it can be concluded that the effects of the CETP variation on LDL subfraction could change in cardiometabolic events such as CHD and statin therapy.  相似文献   
8.
The invasive freshwater snail Tarebia granifera (Lamarck, 1822) was first reported in South Africa in 1999 and it has become widespread across the country, with some evidence to suggest that it reduces benthic macroinvertebrate biodiversity. The current study aimed to identify the primary abiotic drivers behind abundance patterns of T. granifera, by comparing the current abundance of the snail in three different regions, and at three depths, of the highly modified Nseleni River in KwaZulu-Natal, South Africa. Tarebia granifera was well established throughout the Nseleni River system, with an overall preference for shallow waters and seasonal temporal patterns of abundance. Although it is uncertain what the ecological impacts of the snail in this system are, its high abundances suggest that it should be controlled where possible and prevented from invading other systems in the region.  相似文献   
9.
Putrescine is reported to be necessary for cold acclimation under low-temperature stress. In this study, the effect of low-temperature on some physiological and biochemical parameters has been investigated using the green algae Chlamydomonas reinhardtii. The lipid peroxidation rate, amount of Rubisco protein, activities of antioxidant enzymes and gene expression of polyamine biosynthesis (odc2, and spd1), heat shock proteins (hsp70c, hsp90a, and hsp90c), and PSII repair mechanisms (psba, rep27, and tba1) were determined to understand the low-temperature response. Exogenous putrescine application significantly increased Rubisco protein concentration and catalase enzyme activities under low-temperature stress. Moreover, real-time RT-PCR results and gene expression analysis showed that polyamine metabolism induced gene expression at low-temperatures in the first 24 h. In the same way, the gene expression of heat shock proteins (hsp70c, hsp90a, and hsp90c) decreased under low-temperature treatment for 72 h; however, application of putrescine enhanced the gene expression in the first 24 h. The results obtained indicated that molecular response in the first 24 h could be important for cold acclimation. The psba and tba1 expressions were reduced under low-temperatures depending on the exposure time. In contrast, the exogenous putrescine enhanced the expression level of the psba response to low-temperature at 24 and 72 h. The results obtained in this study indicate that putrescine could play a role in the PS II repair mechanisms under low-temperature stress.  相似文献   
10.
To be utilized in biomass conversion, including ethanol production and galactosylated oligosaccharide synthesis, namely prebiotics, the gene of extracellular endo‐β‐1,4‐mannanase (EC 3.2.1.78) of Aspergillus fumigatus IMI 385708 (formerly known as Thermomyces lanuginosus IMI 158749) was expressed first in Aspergillus sojae and then in Pichia pastoris under the control of the glyceraldehyde triphosphate dehydrogenase (gpdA ) and the alcohol oxidase (AOX1 ) promoters, respectively. The highest production of mannanase (352 U mL?1) in A. sojae was observed after 6 days of cultivation. In P. pastoris, the highest mannanase production was observed 10 h after induction with methanol (61 U mL?1). The fold increase in mannanase production was estimated as ~12‐fold and ~2‐fold in A. sojae and P. pastoris, respectively, when compared with A. fumigatus. Both recombinant enzymes showed molecular mass of about 60 kDa and similar specific activities (~350 U mg?1 protein). Temperature optima were at 60°C and 45°C, and maximum activity was at pH 4.5 and 5.2 for A. sojae and P. pastoris, respectively. The enzyme from P. pastoris was more stable retaining most of the activity up to 50°C, whereas the enzyme from A. sojae rapidly lost activity above 40°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号