首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   1篇
  64篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2001年   4篇
  2000年   3篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   4篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1977年   1篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1966年   1篇
排序方式: 共有64条查询结果,搜索用时 0 毫秒
1.
2.
Accumulation of 5-aminolevulinic acid (ALA) is an event characteristic of porphyrias that may contribute to their pathological manifestations. To investigate effects of ALA independent of porphyrin accumulation we treated rats with the methyl ester of succinylacetone, an inhibitor of 5-aminolevulinic acid dehydratase that accumulates in the porphyric-like syndrome hereditary tyrosinemia. Acute 2-day treatment of fasted rats with succinylacetone methyl ester (SAME) promoted a 27% increase in plasma ALA. This increase in plasma ALA was accompanied by augmentation of the level of total nonheme iron in liver (37%) and brain (20%). Mobilization of iron was also indicated by 49% increase in plasma iron and a 77% increase in plasma transferrin saturation. Liver responded with a mild (12%) increase in ferritin. Under these acute conditions, some indications of oxidative stress were evident: a 15% increase in liver reactive protein carbonyls, and a 42% increase in brain subcellular membrane TBARS. Brain also showed a 44% increase in CuZnSOD activity, consistent with observations in treatment with ALA. Overall, the data indicate that SAME promotes ALA-driven changes in iron metabolism that could lead to increased production of free radicals. The findings support other evidence that accumulation of ALA in porphyrias and hereditary tyrosinemia may induce iron-dependent biological damage that contributes to neuropathy and hepatoma.  相似文献   
3.
Given the paradoxical effects of phenolics in oxidative stress, we evaluated the relative pro-oxidant and antioxidant properties of four natural phenolic compounds in DNA nicking. The phenolic compounds differed dramatically in their ability to nick purified supercoiled DNA, with the relative DNA nicking activity in the order: 1,2,4-benzenetriol (100% nicking) > gallic acid > caffeic acid > gossypol (20% nicking). Desferrioxamine (0.02 mM) decreased DNA strand breakage by each phenolic, most markedly with gallate (85% protection) and least with caffeic acid (26% protection). Addition of metals accelerated DNA nicking, with copper more effective (~5-fold increase in damage) than iron with all four phenolics. Scavengers revealed the participation of specific oxygen-derived active species in DNA breakage. Hydrogen peroxide participated in all cases (23–90%). Hydroxyl radicals were involved (32–85%), except with 1,2,4-benzenetriol. Superoxide participated (81–86%) with gallic acid and gossypol, but not with caffeic acid or 1,2,4-benzenetriol. With 1,2,4-benzenetriol, scavengers failed to protect significantly except in combination. Thus, in the presence of desferrioxamine, catalase or superoxide dismutase inhibited almost completely. When DNA breakage was induced by Fenton's reagent (ascorbate plus iron) the two catechols (caffeic acid and gossypol) were protective, whereas the two triols (1,2,4-benzenetriol and gallic acid) exacerbated damage.  相似文献   
4.
There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L‐NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1–34] (80 µg/kg/day) or L‐NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro‐CT, histomorphometry and three‐point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co‐treatment with L‐NAME blocked the action of PTH on blood flow, whereas L‐NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co‐treatment with L‐NAME restricted the PTH‐stimulated increase in cortical bone formation but had no clear‐cut effects in trabecular bone. Co‐treatment with L‐NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO‐mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.  相似文献   
5.
5-Aminolevulinic acid (ALA), a heme precursor overproduced in various porphyric disorders, has been implicated in iron-mediated oxidative damage to biomolecules and cell structures. From previous observations of ferritin iron release by ALA, we investigated the ability of ALA to cause oxidative damage to ferritin apoprotein. Incubation of horse spleen ferritin (HoSF) with ALA caused alterations in the ferritin circular dichroism spectrum (loss of a alpha-helix content) and altered electrophoretic behavior. Incubation of human liver, spleen, and heart ferritins with ALA substantially decreased antibody recognition (51, 60, and 28% for liver, spleen, and heart, respectively). Incubation of apoferritin with 1-10mM ALA produced dose-dependent decreases in tryptophan fluorescence (11-35% after 5h), and a partial depletion of protein thiols (18% after 24h) despite substantial removal of catalytic iron. The loss of tryptophan fluorescence was inhibited 35% by 50mM mannitol, suggesting participation of hydroxyl radicals. The damage to apoferritin had no effect on ferroxidase activity, but produced a 61% decrease in iron uptake ability. The results suggest a local autocatalytic interaction among ALA, ferritin, and oxygen, catalyzed by endogenous iron and phosphate, that causes site-specific damage to the ferritin protein and impaired iron sequestration. These data together with previous findings that ALA overload causes iron mobilization in brain and liver of rats may help explain organ-specific toxicities and carcinogenicity of ALA in experimental animals and patients with porphyria.  相似文献   
6.
Summary : An interactive dotmatrix program for the MacOS was designed that allows comparison of DNA to protein sequences using nested 3-frame translations. Availability : Shareware, available at http://copan.bioz.unibas.ch/software/ Contact : burglin@ubaclu. unibas.ch   相似文献   
7.
8.
9.
Superoxide dismutase can either inhibit or stimulate autoxidation of different hydroquinones, suggesting multiple roles for O2.-. Inhibitory actions of superoxide dismutase include termination of O2.(-)-propagated reaction chains and metal chelation by the apoprotein. Together, chelation of metals and termination of O2.(-)-propagated chains can effectively prevent reduction of oxygen. Chain termination by superoxide dismutase can thus account for negligible accumulation of H2O2 without invoking a superoxide:semiquinone oxidoreductase activity for this enzyme. One stimulatory action of superoxide dismutase is to decrease thermodynamic limitations to reduction of oxygen. Whether superoxide dismutase inhibits or accelerates an autoxidation depends on the reduction potentials of the quinone and the availability of metal coordination for inner sphere electron transfers.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号