首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
SUMMARY. 1. Population growth rates and relative competitive abilities of the rotifer Keratella cochlearis f. tecta and the small-bodied cladoceran Daphnia ambigua were studied under different schedules of food addition but equal total food quantity (per 4-day interval). The initial population growth rate of Keratella was significantly affected by the feeding schedule and by the presence of competitors, while that of Daphnia was affected by neither factor. Population densities of both species tended to increase as the frequency of food addition increased.
2. Daphnia suppressed and excluded Keratella from mixed-species cultures when food was provided intermittently at a high concentration, but it failed to exclude the rotifer when food was provided in a near-continuous supply at low concentration. Keratella had only a minor suppressive effect on Daphnia in all mixed-species treatments.
3. Starvation experiments indicate that Daphnia is able to withstand food shortages for significantly longer periods of time than Keratella . These and other results indicate that the outcome of interspecific competition between these species may be influenced by me frequency and concentration at which food is supplied. Daphnia ambigua is competitively superior to K. cochlearis when food is concentrated or 'pulsed', but much less so when ambient food levels are chronically low. Patterns of food availability may have important effects in determining the relative abundance of rotifers and small cladocerans in natural zooplankton communities.  相似文献   
2.
1. Winter temperatures differ markedly on the Canadian prairies compared with Denmark. Between 1 January 1998 and 31 December 2002, average weekly and monthly temperatures did not drop below 0 °C in the vicinity of Silkeborg, Denmark. Over this same time, weekly average temperatures near Calgary, Alberta, Canada, often dropped below −10 °C for 3–5 weeks and the average monthly temperature was below 0 °C for 2–4 months. Accordingly, winter ice conditions in shallow lakes in Canada and Denmark differed considerably. 2. To assess the implications of winter climate for lake biotic structure and function we compared a number of variables that describe the chemistry and biology of shallow Canadian and Danish lakes that had been chosen to have similar morphometries. 3. The Danish lakes had a fourfold higher ratio of chlorophyll‐a: total phosphorus (TP). Zooplankton : phytoplankton carbon was related to TP and fish abundance in Danish lakes but not in Canadian lakes. There was no significant difference in the ratio log total zooplankton biomass : log TP and the Canadian lakes had a significantly higher proportion of cladocerans that were Daphnia. These differences correspond well with the fact that the Danish lakes have more abundant and diverse fish communities than the Canadian lakes. 4. Our results suggest that severe Canadian winters lead to anoxia under ice and more depauperate fish communities, and stronger zooplankton control on phytoplankton in shallow prairie lakes compared with shallow Danish lakes. If climate change leads to warmer winters and a shorter duration of ice cover, we predict that shallow Canadian prairie lakes will experience increased survivorship of planktivores and stronger control of zooplankton. This, in turn, might decrease zooplankton control on phytoplankton, leading to ‘greener’ lakes on the Canadian prairies.  相似文献   
3.
We used a nonintrusive field experiment carried out at six sites – Wales (UK), Denmark (DK), the Netherlands (NL), Hungary (HU), Sardinia (Italy – IT), and Catalonia (Spain – SP) – along a climatic and latitudinal gradient to examine the response of plant species richness and primary productivity to warming and drought in shrubland ecosystems. The warming treatment raised the plot daily temperature by ca. 1 °C, while the drought treatment led to a reduction in soil moisture at the peak of the growing season that ranged from 26% at the SP site to 82% in the NL site. During the 7 years the experiment lasted (1999–2005), we used the pin‐point method to measure the species composition of plant communities and plant biomass, litterfall, and shoot growth of the dominant plant species at each site. A significantly lower increase in the number of species pin‐pointed per transect was found in the drought plots at the SP site, where the plant community was still in a process of recovering from a forest fire in 1994. No changes in species richness were found at the other sites, which were at a more mature and stable state of succession and, thus less liable to recruitment of new species. The relationship between annual biomass accumulation and temperature of the growing season was positive at the coldest site and negative at the warmest site. The warming treatment tended to increase the aboveground net primary productivity (ANPP) at the northern sites. The relationship between annual biomass accumulation and soil moisture during the growing season was not significant at the wettest sites, but was positive at the driest sites. The drought treatment tended to reduce the ANPP in the NL, HU, IT, and SP sites. The responses to warming were very strongly related to the Gaussen aridity index (stronger responses the lower the aridity), whereas the responses to drought were not. Changes in the annual aboveground biomass accumulation, litterfall, and, thus, the ANPP, mirrored the interannual variation in climate conditions: the most outstanding change was a decrease in biomass accumulation and an increase in litterfall at most sites during the abnormally hot year of 2003. Species richness also tended to decrease in 2003 at all sites except the cold and wet UK site. Species‐specific responses to warming were found in shoot growth: at the SP site, Globularia alypum was not affected, while the other dominant species, Erica multiflora, grew 30% more; at the UK site, Calluna vulgaris tended to grow more in the warming plots, while Empetrum nigrum tended to grow less. Drought treatment decreased plant growth in several studied species, although there were some species such as Pinus halepensis at the SP site or C. vulgaris at the UK site that were not affected. The magnitude of responses to warming and drought thus depended greatly on the differences between sites, years, and species and these multiple plant responses may be expected to have consequences at ecosystem and community level. Decreases in biodiversity and the increase in E. multiflora growth at the SP site as a response to warming challenge the assumption that sensitivity to warming may be less well developed at more southerly latitudes; likewise, the fact that one of the studied shrublands presented negative ANPP as a response to the 2003 heat wave also challenges the hypothesis that future climate warming will lead to an enhancement of plant growth and carbon sequestration in temperate ecosystems. Extreme events may thus change the general trend of increased productivity in response to warming in the colder sites.  相似文献   
4.
Surveys of tropical insects are increasingly uncovering cryptic species – morphologically similar yet reproductively isolated taxa once thought to comprise a single interbreeding entity. The vast majority of such species are described from a single location. This leaves us with little information on geographic range and intraspecific variation and limits our ability to infer the forces responsible for generating such diversity. For example, in herbivorous and parasitic insects, multiple specialists are often discovered within what were thought to be single more generalized species. Host shifts are likely to have contributed to speciation in these cases. But when and where did those shifts occur, and were they facilitated by geographic isolation? We attempted to answer these questions for two cryptic species within the butterfly Cymothoe egesta that were recently discovered on different host plants in central Cameroon. We first used mtDNA markers to separate individuals collected on the two hosts within Cameroon and then extended our analysis to incorporate individuals collected across the entire pan‐Afrotropical range of the original taxon. To our surprise, we found that the species are almost entirely allopatric, dividing the original range and overlapping only in the narrow zone of West‐Central Africa where they were first discovered in sympatry. This finding, combined with analyses of genetic variation within each butterfly species, strongly suggests that speciation occurred in allopatry, probably during the Pleistocene. We discuss the implications of our results for understanding speciation among other cryptic species recently discovered in the tropics and argue that more work is needed on geographic patterns and host usage in such taxa.  相似文献   
5.
1. Return of large‐bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear‐water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear‐water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake, the zooplankton (primarily Daphnia) were mainly found in the pelagic area in spring, but from mid‐May they were particularly abundant in the APB and almost exclusively so in mid‐June and July, where they appeared in extremely high densities during day (up to 2600 ind. L−1). During night Daphnia densities were overall more equally distributed between the five habitats. Ceriodaphnia was proportionally more abundant in the APB during most of the season. Cyclopoids were more abundant in the high APB during day but were equally distributed between the five habitats during night. 4. In the turbid lake, however, no clear aggregation was observed in the APB for either of the pelagic genera (Daphnia and Bosmina). This may reflect a higher refuge effect in the open water due to the higher turbidity, reduced ability to orient to plant beds and a significantly higher fish density (mainly of roach, Rutilus rutilus, and perch, Perca fluviatilis) in the plant beds than in the clear lake. Chydorus was found in much higher proportions among the plants, while cyclopoids, particularly the pelagic Cyclops vicinus, dominated in the pelagic during day and in the pelagic and high density plants during night. 5. Our results suggest that water clarity is decisive for the habitat choice of large‐bodied zooplankton and that introduction of APB as a restoration measure to enhance zooplankton survival is only a useful tool when water clarity increases following loading reduction. Our results indicate that dense APB will be the most efficient.  相似文献   
6.
Growth of macrophytes and ecosystem consequences in a lowland Danish stream   总被引:13,自引:0,他引:13  
SUMMARY. 1. The River Suså is a small, nutrient-rich stream situated in an open landscape with clayish subsoil under intensive cultivation. Discharge was variable daily and seasonally due to low groundwater input. Above-ground development of submerged macrophytes was restricted to late May to November, when water velocity and depth were low. Dominant macrophytes were rooted Potamogeton pectinatus and Sparganium emersum and unrooted Cladophora . Biomass development was closet) related to light availability.
2. Growth rates of macrophytes were linearly related to light availability when self-shading was accounted for. Potamogeton pectinatus grew rapidly m May-June, concentrated the biomass at the water-surface during July-August, and then declined exponentially when the shoots became basally senescent. Sparganium emersum had linear, flexible leaves that were continuously replaced from a basal meristem. Sparganium emersum was less susceptible to high water velocities than Potamogeton pectinatus and the biomass declined later and at lower rates during autumn. Sparganium emersum also regrew after culling that left its meristem intact in the sediment. Unrooted Cladophora developed a high biomass during sunny periods and subsequently disappeared at high discharges. The summer biomass of rooted macrophytes was greater in years with high summer discharge, whereas the biomass of Cladophora and of the epiphytic microbial community was lower due to scouring.
3. Submerged macrophytes played a key role in structure and functioning of the ecosystem. They reduced water velocities two to four fold during summer and promoted extensive organic sedimentation. The biomass of benthic diatoms declined parallel to increased macrophyte shading and sedimentation. In addition, submerged macrophytes formed a large substratum for macroinvertebrates and for a microbial community.  相似文献   
7.
1. Fish community structure and habitat distribution of the abundant species roach, perch and ruffe were studied in Lake Nordborg (Denmark) before (August 2006) and after (August 2007) aluminium treatment to reduce internal phosphorus loading. 2. Rapid changes in fish community structure, abundance and habitat distribution occurred following a decline in in‐lake phosphorus concentrations from 280 to 37 μg P L?1 and an increase in Secchi depth transparency from 1.1 to 1.9 m (August). The proportion of perch in overnight gill net catches increased, whilst roach decreased, and the average weight of all key species increased. 3. The habitat distribution of perch and roach changed from a high proportion in the upper pelagic and littoral zones in 2006, towards enhanced proportions in the deeper pelagic and profundal zone in 2007. The abundance of large‐bodied zooplankton increased and the abundance of benthic invertebrates decreased in the same period, suggesting that the habitat shift was not induced by food limitation. 4. Ruffe shifted from the littoral and upper profundal zones towards the deep profundal zone, likely reflecting an increased predation risk in the littoral zone and better oxygen conditions in the deep profundal. 5. Our results indicate that enhanced risk of predation in the upper pelagic and the littoral zones and perhaps improved oxygen concentrations in the deeper profundal zone at decreasing turbidity are responsible for the observed habitat shift. The results indicate that fish respond rapidly to changes in nutrient state, both in terms of community structure and habitat use.  相似文献   
8.
Thawing permafrost in the sub‐Arctic has implications for the physical stability and biological dynamics of peatland ecosystems. This study provides an analysis of how permafrost thawing and subsequent vegetation changes in a sub‐Arctic Swedish mire have changed the net exchange of greenhouse gases, carbon dioxide (CO2) and CH4 over the past three decades. Images of the mire (ca. 17 ha) and surroundings taken with film sensitive in the visible and the near infrared portion of the spectrum, [i.e. colour infrared (CIR) aerial photographs from 1970 and 2000] were used. The results show that during this period the area covered by hummock vegetation decreased by more than 11% and became replaced by wet‐growing plant communities. The overall net uptake of C in the vegetation and the release of C by heterotrophic respiration might have increased resulting in increases in both the growing season atmospheric CO2 sink function with about 16% and the CH4 emissions with 22%. Calculating the flux as CO2 equivalents show that the mire in 2000 has a 47% greater radiative forcing on the atmosphere using a 100‐year time horizon. Northern peatlands in areas with thawing sporadic or discontinuous permafrost are likely to act as larger greenhouse gas sources over the growing season today than a few decades ago because of increased CH4 emissions.  相似文献   
9.
Abstract. The taxonomic and genetic relationships between P.machaon rathjensi Warnecke from the west side of southern Arabia and P.machaon muetingi Seyer from the east are discussed, together with suggestions of their relationship to P.machaon saharae Oberthiir from the northern Hejaz, Sinai and desert North Africa. It is concluded that though P.m.rathjensi and P.m.saharae are subspecifically distinct, they are very closely related to each other, and both should be regarded as specifically distinct from the rest of the machaon complex.
The remainder of the machaon complex in its turn presents a somewhat similar problem. Thus P.machaon gorganus Fruhstorfer and P.hospiton Géné are normally regarded as good species, but Fl caterpillars have been found in the wild and the cross can be readily produced in captivity with no upset in the sex ratio. Furthermore, recently we have obtained sparse F2 offspring between the two species.
We therefore suggest that the entire P.machaon complex is in a labile state as regards speciation throughout its range and the relationships between the various forms are not easily expressed through the traditional species and subspecies concepts. Our tentative conclusions are that the status of P.machaon and P.hospiton as distinct species probably remains valid. The saharaelrathjensi complex might be considered distinct from P.machaon using the biological species concept, while their genetics indicate a more conservative approach. However, more important than the exact status of the taxa in question is the fact that the P.machaon complex illustrates evoluton in action, the end result of which cannot be predicted.  相似文献   
10.
1. For 13 years the response of the plankton and fish community to a decline in external phosphorus loading was studied in eight lakes with a mean depth <5 m. We conducted chi‐square analyses of sign of slope (positive or negative) of bimonthly averages of plankton variables for the eight lakes versus time. For fish, we compared results from two periods, i.e. 1989–1994 versus 1994–2001 as less data were available. 2. Fish community structure tended to respond to the lowered concentration of total phosphorus (TP), although not all changes were significant. While catch per unit effort (multi‐mesh sized gill nets) of cyprinids (especially bream, Abramis brama and roach, Rutilus rutilus) was highest in the first 5‐year period, the quantitative importance particularly of perch (Perca fluviatilis), pike (Esox lucius) and rudd (Scardinius erythropthalmus), a littoral species, increased significantly after 1994. 3. No changes occurred in zooplankton biomass, except for an increase in November and December. Biomass of small cladocerans, however, declined during summer and autumn, and the proportion of Daphnia to cladoceran biomass also increased. Average body weight of Daphnia and that of all cladocerans increased. The proportion of calanoids among copepods decreased in summer and the average body weight of cyclopoids and calanoids decreased during summer and autumn/early winter. 4. Total biovolume of phytoplankton declined significantly in March to June and tended to decline in November and December as well, while no significant changes were observed during summer and autumn. Non‐heterocystous cyanobacteria showed a decreasing trend during summer and autumn, while heterocystous cyanobacteria increased significantly in late summer. An increase in late summer was also evident for cryptophytes and chrysophytes, while diatoms tended to decline during most seasons. 5. We conclude that phytoplankton, and probably also fish, responded rapidly to reduced loading, whereas the effect on zooplankton was less pronounced. However, increases in body weight of cladocerans and the zooplankton to phytoplankton biomass ratio during summer indicate reduced top‐down control on zooplankton and enhanced grazing on phytoplankton. This conclusion is supported by a tendency for fish biomass to decline and a shift towards greater dominance by piscivores and, thus, an increased likelihood of predator control of zooplanktivorous cyprinids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号