首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   3篇
  2015年   1篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   9篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1976年   2篇
  1974年   2篇
  1971年   2篇
  1958年   2篇
  1957年   2篇
  1956年   2篇
  1955年   1篇
  1953年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
1.
Proteaceae are most diverse in southern Africa and Australia, especially in the south-western portions of these regions. Most genera have some species in flower at all times of the year, although generally there is a preponderance of species that flower between late winter and early summer. The one genus that is an exception to this generalization is Banksia, which either has approximately the same percentage of species in flower at various times of the year (southwestern Australia) or peaks in autumn (southeastern Australia). Within particular communities, opportunities for hybridization among congeneric species are minimized by staggered flowering times, different pollen vectors and/or various incompatibility mechanisms. Birds, mammals and arthropods have been identified as visitors to the inflorescences of many Proteaceae. The most common avian visitors to the majority of genera in Australia are honeyeaters, although lorikeets, silvereyes and approximately 40 other species sometimes may be important. Sugarbirds and sunbirds are seen most frequently at inflorescences of Protea, Leucospermum and Mimetes in southern Africa, although they rarely visit other genera. In most cases, avian visitors forage in a manner that permits the acquisition and transfer of pollen. Limited evidence supports the hypothesis that birds are selective in their choice of inflorescences, responding to morphological and/or colour changes and usually visiting those inflorescences that offer the greatest nectar rewards. Arthropods may be equally selective, although it is possible that only the larger moths, bees and beetles are important pollinators, even for those plant species that rely entirely on arthropods for pollen transfer. Mammals are pollen vectors for some Proteaceae, especially those that have geoflorous and/or cryptic inflorescences. In Australia, small marsupials may be the most important mammalian pollinators, although rodents fill this niche in at least some southern African habitats. All but two genera of Proteaceae are hermaphroditic and protandrous, the exceptions being the dioecious southern African genera Aulax and Leucadendron. For hermaphroditic species, the timing of visits by animals to inflorescences is such that they not only acquire pollen from freshly opened flowers but also brush against pollen presenters and stigmas of others that have lost self-pollen and become receptive. Birds and insects (and probably mammals) generally forage in such a way as to facilitate both outcrossing and selfing. Some species are self-compatible, although many require outcrossing if viable seed is to be formed. Regardless of which animals are the major pollen vectors, fruit set is low relative to the number of flowers available, especially in Australian habitats. Functional andromonoecy of the majority of flowers is advanced as the major cause of poor fruit set. The pollination biology and breeding systems of Australian and southern African Proteaceae resemble one another in many ways, partly because of their common ancestry, but also due to convergence. Divergence is less obvious, apart from the dichotomy between dioecious and hermaphroditic genera, and differences in the levels of seed set for Australian and African species. Future studies should concentrate on identifying the most important pollinators for various Proteaceae, the manner in which their visits are integrated with floral development and factors responsible for limiting fruit set.  相似文献   
2.
Abstract The Capricorn Group of islands in Australia's Great Barrier Reef Marine Park sustains one of the world's largest breeding populations of the Wedge-tailed Shearwater Puffinus pacificus. Heron Island, a 13.5 ha coral cay which supports tourist and research station leases as well as a national park, is the third largest nesting island in the group. Sample censuses of breeding burrows were conducted each year between 1985 and 1990 and a further survey was completed in 1993. These returned estimates of between 13 264±1387 and 16 337±1545 active burrows (Y±SE). Burrow densities within each of the habitats monitored showed no significant trends between years, although there were large differences in burrow density between habitats. There were roughly the same number of burrows in the developed (west) and national park (east) halves of the cay. A miniature video camera system (burrowscope), which allowed nesting chambers at the ends of burrows to be inspected, was used in 1989, 1990 and 1993. This demonstrated that around half the burrows were occupied by incubating birds. Variations were found in the distribution of incubating birds between habitats, although this did not remain constant between the years. In the 1993 season, breeding activity was traced from the burrow establishment to fledging stage. Fifty-one per cent of burrows were used for breeding (eggs laid), 77% of eggs hatched and 80% of chicks produced a fledgling. Overall breeding success for the island was estimated at 61%. In 1993 the area designated as Buildings was found to have significantly lower hatching success compared with natural habitats. Most mortality occurred at the egg stage; however, in the Fringe habitat, mortality was highest at the chick stage. Previous surveys have estimated the breeding population from burrow counts. It now appears that only about 30% of such burrows produce fledglings.  相似文献   
3.
The new stick insect family Gallophasmatidae, based on Gallophasma longipalpis gen. et sp.n. , from the Earliest Eocene French amber has a pattern of tegmina venation typical of Archaeorthoptera, also present in at least some Mesozoic ‘Phasmatodea’. On the other hand, Gallophasma displays in its body anatomy some apomorphies of the extant Euphasmatodea, e.g. fusion of metatergum and abdominal tergum 1, correlated with the reduction of abdominal sternum 1 to lateral triangular sclerites. A unique autapomorphy of Gallophasma is the presence of annulated and apparently multi‐segmented or pseudo‐segmented cerci; all other Phasmatodea have one‐segmented cerci. The venation of the tegmina of Gallophasma differs from that of extant winged Phasmatodea in the plesiomorphic absence of a knob‐like dorsal eversion. This and other differences in the wing venation between extant and extinct Phasmatodea might have been caused by the loss of wings at some point in the evolutionary history of the order and their secondary gain in a subclade of the extant phasmids.  相似文献   
4.
Although Ensifera is a major insect model group, its phylogenetic relationships have been understudied so far. Few phylogenetic hypotheses have been proposed, either with morphological or molecular data. The largest dataset ever used for phylogeny reconstruction on this group is molecular (16S rRNA, 18S rRNA and 28S rRNA sequences for 51 ensiferan species), which has been used twice with different resultant topologies. However, only one of these hypotheses has been adopted commonly as a reference classification. Here we re‐analyse this molecular dataset with different methods and parameters to test the robustness and the stability of the adopted phylogeny. Our study reveals the instability of phylogenetic relationships derived from this dataset, especially for the deepest nodes of the group, and suggests some guidelines for future studies. The comparison between the different classifications proposed in the past 70 years for Ensifera and our results allows the identification of potential monophyletic clades (katydids, mole crickets, scaly crickets + Malgasia, true crickets, leaf roller crickets, cave crickets) and the remaining unresolved clades (wetas, Jerusalem crickets and most of the highest rank clades) in Ensifera phylogeny.  相似文献   
5.
6.
7.
Abstract We measured the plasticity of the response of photosynthesis to nutrient supply in seedlings of the dominant four conifer and broadleaved angiosperm tree species from an indigenous forest in South‐westland, New Zealand. We hypothesized that the response of conifers to differing nutrient supply would be less than the response for the angiosperms because of greater adaptation to low fertility conditions. In Prumnopitys ferruginea (D. Don) de Laub. the maximum velocity of electron transport, Jmax, doubled with a 10‐fold increase in concentration of nitrogen supply. In Dacrydium cupressinum Lamb. the maximum velocity of carboxylation, Vcmax, doubled with a 10‐fold increase in phosphorus supply. In contrast, photosynthetic capacity for the angiosperm species Weinmannia racemosa L.f. was affected only by the interaction of nitrogen and phosphorus and photosynthetic capacity of Metrosideros umbellata Cav. was not affected by nutrient supply. The response of the conifers to increasing availability of nutrient suggests greater plasticity in photosynthetic capacity, a characteristic not generally associated with adaptation to soil infertility, thus invalidating our hypothesis. Our data suggest that photosynthetic response to nutrient supply cannot be broadly generalized between the two functional groups.  相似文献   
8.
Survivorship in Acacia suaveolens was assessed through seedling and adult stages. Moisture stress was found to be the critical factor limiting early seedling survival. Both seedling and adult populations were characterized by periods of low mortality interspersed with pulses of high mortality. A composite survivorship curve for A. suaveolens based on nine sites predicts that some 20–25 years after afire, established plants should disappear from the above-ground flora if another fire does not occur. Fecundity and survivorship data were used to estimate the flux of seed in the soil over time in a hypothetical A. suaveolens population. From this it was predicted that, following establishment of plants after a fire, the seed-bank would rapidly reach a maximum after 6 years and thereafter slowly decline, until after 60 years there would be only as many seeds as there were original parental plants. The situation would vary with predispersal seed predation, seed predation on the soil surface, seed dispersal by ants to ‘unsafe sites’ and the size of the initial seed-bank prior to establishment. Only after a very long inter-fire period would A. suaveolens be eliminated from a site. Elimination of the species is also possible under very frequent fires. A 2–5 year fire-free period is needed for plants to reach maturity and another 6 years are needed to maximize seed input into the soil seed-bank. In addition, seedling recruitment following cool burns is low to non-existent as dormancy is not broken for most seeds in the soil during such burns.  相似文献   
9.
Tundra ecosystems are widely recognized as precious areas and globally important carbon (C) sinks, yet our understanding of potential threats to these habitats and their large soil C store is limited. Land‐use changes and conservation measures in temperate regions have led to a dramatic expansion of arctic‐breeding geese, making them important herbivores of high‐latitude systems. In field experiments conducted in high‐Arctic Spitsbergen, Svalbard, we demonstrate that a brief period of early season belowground foraging by pink‐footed geese is sufficient to strongly reduce C sink strength and soil C stocks of arctic tundra. Mechanisms are suggested whereby vegetation disruption due to repeated use of grubbed areas opens the soil organic layer to erosion and will thus lead to progressive C loss. Our study shows, for the first time, that increases in goose abundance through land‐use change and conservation measures in temperate climes can dramatically affect the C balance of arctic tundra.  相似文献   
10.
Germination in 35 species from 15 legume genera of southeastern Australia was promoted by a heat treatment which broke the seed coatcaused dormancy. Once the critical temperature was reached, most seeds had their dormancy broken, independent of the duration of heating. Species fell into three classes according to whether their dormancy was broken by a temperature of 40, 60 or 80°C. Highest germination in all species was achieved by heating in the temperature range 80–100°C, although long durations (120 min) at 100°C caused seed death in several species. At 120°C, seeds of most species were killed at all but one minute's duration. A proportion of seeds from 7 species (Acacia myrtifolia, Pultenaea daphnoides, P. incurvata, P. linophylla, P. polifolia, Dillwynia floribunda and Sphaerolobium vimineurn) was not killed at 120°C and had their dormancy broken. This proportion varied markedly and resultant germination levels were significantly less than those at 80 and 100°C, except in S. vimineum. Between-site variations in the 4 species tested (A. myrtifolia, A. suaveolens, A. terminalis and A. ulicifolia) were small. These variations concerned: (i) the minimum temperature required to break seed dormancy in 2 species: 60°C in one population of A. myrtifolia and A. suaveolens, and 80°C in the other; and (ii) the intensity of the germination response. Duration of heating was less important than temperature as a determinant of germination. Ordination techniques revealed that results from one duration across temperatures were comparable with data from multiple durations. This has significant applications in studying rare species, where seed may be in short supply. Predicted germination levels after a moderate intensity fire should far exceed those after a low intensity fire. Little germination was predicted for many species after a low intensity fire and for one species, A. elongata, no germination was predicted. The potential role of indicator species in relation to the maintenance of species in a community is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号