首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  2012年   1篇
  2009年   1篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1956年   1篇
  1955年   1篇
  1954年   3篇
  1953年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Salt Tolerance in the Succulent, Coastal Halophyte, Sarcocornia natalensis   总被引:2,自引:0,他引:2  
The effects of 0, 50, 100, 200, 300, 400 and 500 mol m–3NaCl on growth and ion accumulation in the succulent, coastalhalophyte Sarcocornia natalensis (Bunge ex Ung.-Sternb.) A.J. Scott were investigated. Increase in salinity from 0 to 300 mol m–3 NaCl stimulatedproduction of fresh, dry, and organic dry mass, increased succulenceand shifted resource allocation from roots to shoots. Growthwas optimal at 300 mol m–3 and decreased with furtherincrease in salinity. Water contributed to a large proportion of the increase in freshmass. Inorganic ions, especially Na+ and Cl– contributedsubstantially to the dry mass. At 300 mol m–3 NaCl inorganicions contributed to 37% of total dry mass and NaCl concentrationin the shoots was 482 mol m–3. Expressed sap osmotic potentialsdecreased from –2.10 to –3.95 MPa as salinity increasedfrom 0 to 300 mol m–3 NaCl. Massive accumulation of inorganicions, especially Na+ and Cl, accounted for 86% of theosmotic adjustment at 300 mol m–3 NaCl. Salinity treatments decreased the concentrations of K+ in shoots.Plant Na+ :K+ ratios increased steadily with salinity and reacheda maximum of 16.6 at 400 mol m3 NaCl. It is suggested that the exceptional salt tolerance of S. natalensisis achieved by massive inorganic ion accumulation which providessufficient solutes for osmoregulation, increased water fluxand turgor-induced growth. Key words: Sarcocornia natalensis, salt tolerance, halophyte  相似文献   
2.
The newly described molossid bat, Chaerephon atsinanana Goodman et al., 2010, endemic to eastern Madagascar, shows notably high levels of phylogeographic and genetic structure compared with allopatric Chaerephon leucogaster Grandidier, 1869 from western Madagascar. Such highly significant structuring of haplotypes among altitudinally and latitudinally stratified population groups is contrary to the expected panmixia in strong flying bats. The null model of concordance in historical demographic patterns across these two Chaerephon species was not supported. Mismatch and Bayesian skyline analyses indicated ancient stable C. atsinanana populations of constant size during the last two major Pleistocene glacial periods, making retreat into and expansion from glacial refugia an unlikely explanation for such high levels of structure, in accordance with expectations for tropical bats. Analyses were consistent with post‐refugial population expansion in the less diverse and structured C. leucogaster during the end of the last Pleistocene glacial period. We hypothesise that the pronounced genetic structuring in C. atsinanana may result from female philopatry. Furthermore, differing demographic histories of the two species may have been shaped by differing climate or habitat preferences, consistent with evidence from MaxEnt ecological niche modelling, which shows differences in variables influencing the current predicted distributions. Fossil Quaternary pollen deposits further indicate greater stability in past climatic patterns in eastern versus western Madagascar. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 18–40.  相似文献   
3.
4.
5.
6.
7.
8.
9.
10.
It is widely believed that the adult mammalian brain is insensitiveto thyroid hormones unlike the neonatal brain which is criticallydependent on these hormones for the development of normal structureand function. Recent studies have demonstrated the presenceof limited capacity, high affinity, triiodothyronine (T3) bindingnuclear sites in tissues that are considered responsive to thyroidhormones. Furthermore, there is evidence from studies on peripheraltissues that these T3 binding sites act as true receptors ininitiating thyroid hormone action. This report examines whetherthe higher sensitivity of neonatal brain to thyroid hormonesand the purported decline in sensitivity in adulthood are relatedto changes in the concentration and affinity characteristicsof thyroid hormone receptors in rat cerebral nuclei. Analysisof Scatchard plots of in vitro T3 binding data indicate thatcerebral nuclei from adult rats contain T3 specific nuclearbinding sites at a concentration comparable to that presentduring the period when the brain is critically dependent onthe presence of thyroid hormones and exceed that in the liver,a tissue generally considered thyroid sensitive. Neonatal thyroidectomysignificantly increased the number of binding sites. The resultsshow that the apparent unresponsiveness of the cerebral cortexof adult rats to thyroid hormones is not due to the absenceor a low density of T3 nuclear binding sites. The significanceof these results is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号