首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2005年   2篇
  1954年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
1. Multiannual population cycles of geometrid moths are thought to be driven by trophic‐level interactions involving a delayed density‐dependent component. Predation on adult moths has been a little‐studied mechanism of this phenomenon. 2. Using 29 daytime and 61 night‐time predation trials in the field, we exposed living autumnal moth (Epirrita autumnata Borkhausen, Lepidoptera: Geometridae) females to their natural predators during each autumn throughout the 10‐year population cycle. 3. In our northern study location (70°N), insectivorous passerines had already migrated, and harvestman Mitopus morio Fabricius (Opiliones: Phalangiidae) was found to be the main predator of the adult moths. The predation mortality occurred mainly at night and was positively correlated with the minimum temperature measured during the predation trial. 4. Despite high annual variability in the degree of adult predation, both direct and delayed density‐dependent effects were weak and indicate that predation on adult moths in the autumn does not have any regulatory role in cyclic population dynamics of the autumnal moth in northern Fennoscandia.  相似文献   
3.
Five new microsatellite loci were isolated from the perennial plant, Silene tatarica. We characterized S. tatarica individuals originating from two riverbank populations in northern Finland and observed between four and nine alleles per locus. Observed heterozygosity was consistently lower than gene diversity (HO: 0.0450–0.2385, HE: 0.1919–0.6187). This deficiency of heterozygous genotypes was observed in most locus/population combinations, and is presumably caused by spatial genetic structuring due to restricted seed flow within subpopulations. The markers presented here are the first microsatellites reported for S. tatarica.  相似文献   
4.
5.
1. Both direct and indirect competition can have profound effects on species abundance and expansion rates, especially for a species trying to strengthen a foothold in new areas, such as the winter moth (Operophtera brumata) currently in northernmost Finland. There, winter moths have overlapping outbreak ranges with autumnal moths (Epirrita autumnata), who also share the same host, the mountain birch (Betula pubescens ssp. czerepanovii). Competitive interactions are also possible, but so far unstudied, are explanations for the observed 1–3 years phase lag between the population cycles of the two moth species. 2. In two field experiments, we studied host plant‐mediated indirect inter‐specific competition and direct interference/exploitation competition between autumnal and winter moths. The experimental larvae were grown either with the competing species or with the same number of conspecifics until pupation. Inter‐specific competition was judged from differences in pupal mass (reflecting lifespan fecundity), larval development time and larval survival. 3. Larval performance measurements suggested that neither direct nor indirect inter‐specific competition with the autumnal moth reduce the growth rate of winter moth populations. Winter moths even had a higher probability of survival when reared together with autumnal moths. 4. Thus, we conclude that neither direct nor indirect inter‐specific competition is capable of suppressing the spread of the winter moth outbreak range and that both are also an unlikely cause for the phase lag between the phase‐locked population cycles of the two moth species.  相似文献   
6.
  • 1 Generalist natural enemies are usually not considered as being capable of causing population cycles in forest insects, but they may influence the population dynamics of their prey in the low density cycle phase when specialist enemies are largely absent.
  • 2 In the present field study, the total response of the generalist invertebrate predator community to experimentally established pupal densities of the closely related autumnal (Epirrita autumnata) and winter moths (Operophtera brumata) was analysed.
  • 3 Due to the high amount of variation in the dataset, the exact shape of the response curve could not be convincingly estimated. Nevertheless, two important conclusions can be drawn from the analyses.
  • 4 Firstly, the natural invertebrate predator community seems to become saturated at rather low densities of both autumnal and winter moth pupae. Secondly, the predator community seems to become saturated at much lower densities of autumnal than of winter moth pupae.
  • 5 Furthermore, pupal mass was significantly negatively correlated with invertebrate predation probability in autumnal moth pupae.
  • 6 These results indicate that differences in the predator assemblage being able to consume pupae of the two moth species, as well as different handling times, could be responsible for the substantially higher predation rates in winter than in autumnal moth pupae.
  • 7 As a consequence, the population dynamics of autumnal moths might be less affected by generalist invertebrate predators than those of winter moths, as autumnal moths seem able to escape from the regulating influence of generalist predators at much lower population densities than winter moths.
  相似文献   
7.
Fens, which extend over vast areas in the Northern hemisphere, are sources of the greenhouse gas CH4. Climate change scenarios predict a lowering water table (WT) in mires. To study the effect of WT drawdown on CH4 dynamics in a fen ecosystem, we took advantage of a WT drawdown gradient near a ground water extraction plant. Methane fluxes and CH4 production and oxidation potentials were related to microbial communities responsible for the processes in four mire locations (wet, semiwet, semidry, and dry). Principal component analyses performed on the vegetation, pH, CH4, and WT results clearly separated the four sampling locations in the gradient. Long‐term lowering of WT was associated with decreased coverage of Sphagnum and aerenchymatic plants, decreased CH4 field emissions and CH4 production potential. Based on mcrA terminal restriction fragment length polymorphism the methanogen community structure correlated best with the methane production and coverage of aerenchymatic plants along the gradient. Methanosarcinaceae and Methanocellales were found at the pristine wet end of the gradient, whereas the Fen cluster characterized the dry end. The methane‐oxidizing bacterial community consisted exclusively of Methylocystis bacteria, but interestingly of five different alleles (T, S, R, M, and O) of the particulate methane monooxygenase marker gene pmoA. The M allele was dominant in the wet locations, and the occurrence of alleles O, S, and T increased with drainage. The occurrence of the R allele that characterized the upper peat layer correlated with CH4 oxidation potential. These results advance our understanding of mire dynamics after long‐term WT drawdown and of the microbiological bases of methane emissions from mires.  相似文献   
8.
1. Winter temperatures in northern latitudes are predicted to increase markedly as a result of ongoing climate change, thus making the invasion of new insect defoliators possible. The establishment of new outbreak pest species may have major effects on northern ecosystems that are particularly sensitive to disturbances. 2. Effects of winter minimum temperatures under field and laboratory conditions were examined and limitations by minimum temperatures on future range expansion were investigated for invasive [Operophtera brumata (Lepidoptera: Geometridae)] and potentially invasive [Agriopis aurantiaria (Lepidoptera: Geometridae)] birch‐feeding forest pests. The results for the studied invasive and potentially invasive moths were compared with the parameters of the resident moth species Epirrita autumnata (Lepidoptera: Geometridae). 3. The results showed tolerated critical temperatures of the invader (O. brumata) and the resident (E. autumnata) were more similar (differing only by 1 °C), whereas the potential invader (A. aurantiaria) was much less tolerant of cold temperatures. Although describing different stages of overwintering, results were consistent between laboratory and field studies except for those at one field location, at which other abiotic conditions are suggested to have significant influence on moth egg survival. 4. Based on the present results and expected changes in winter temperatures over the next 30 years, the range expansion of an established invasive species may be predicted. No limitations were found regarding the possible future invasion of a new pest species to northern Fennoscandia. The importance of studying a species' whole overwintering period is highlighted and further studies devoted to the effects of other abiotic factors in addition to the effects of temperature are suggested.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号