首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   4篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1959年   1篇
  1958年   1篇
  1952年   2篇
  1951年   1篇
  1950年   2篇
  1948年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
Warmer and drier climates over Eastern Amazonia have been predicted as a component of climate change during the next 50–100 years. It remains unclear what effect such changes will have on forest–atmosphere exchange of carbon dioxide (CO2) and water, but the cumulative effect is anticipated to produce climatic feedback at both regional and global scales. To allow more detailed study of forest responses to soil drying, a simulated soil drought or 'throughfall exclusion' (TFE) experiment was established at a rain forest site in Eastern Amazonia, Brazil, for which time-series sap flow and soil moisture data were obtained. The experiment excluded 50% of the throughfall from the soil. Sap flow data from the forest plot experiencing normal rainfall showed no limitation of transpiration throughout the two monitored dry seasons. Conversely, data from the TFE showed large dry season declines in transpiration, with tree water use restricted to 20% of that in the control plot at the peak of both dry seasons. The results were examined to evaluate the paradigm that the restriction on transpiration in the dry season was caused by limitation of soil-to-root water transport, driven by low soil water potential and high soil-to-root hydraulic resistance. This paradigm, embedded in the soil–plant–atmosphere (SPA) model and driven using on-site measurements, provided a good explanation ( R 2 > 0.69) of the magnitude and timing of changes in sap flow and soil moisture. This model-data correspondence represents a substantial improvement compared with other ecosystem models of drought stress tested in Amazonia. Inclusion of deeper rooting should lead to lower sensitivity to drought than the majority of existing models. Modelled annual GPP declined by 13–14% in response to the treatment, compared with estimated declines in transpiration of 30–40%.  相似文献   
2.
Understanding the evolution of sex and recombination, key factors in the evolution of life, is a major challenge in biology. Studies of reproduction strategies of natural populations are important to complement the theoretical and experimental models. Fungi with both sexual and asexual life cycles are an interesting system for understanding the evolution of sex. In a study of natural populations of yeast Saccharomyces cerevisiae , we found that the isolates are heterothallic, meaning their mating type is stable, while the general belief is that natural S. cerevisiae strains are homothallic (can undergo mating-type switching). Mating-type switching is a gene-conversion process initiated by a site-specific endonuclease HO; this process can be followed by mother–daughter mating. Heterothallic yeast can mate with unrelated haploids (amphimixis), or undergo mating between spores from the same tetrad (intratetrad mating, or automixis), but cannot undergo mother–daughter mating as homothallic yeasts can. Sequence analysis of HO gene in a panel of natural S. cerevisiae isolates revealed multiple mutations. Good correspondence was found in the comparison of population structure characterized using 19 microsatellite markers spread over eight chromosomes and the HO sequence. Experiments that tested whether the mating-type switching pathway upstream and downstream of HO is functional, together with the detected HO mutations, strongly suggest that loss of function of HO is the cause of heterothallism. Furthermore, our results support the hypothesis that clonal reproduction and intratetrad mating may predominate in natural yeast populations, while mother–daughter mating might not be as significant as was considered.  相似文献   
3.
Photosynthetic leaf traits were determined for savanna and forest ecosystems in West Africa, spanning a large range in precipitation. Standardized major axis fits revealed important differences between our data and reported global relationships. Especially for sites in the drier areas, plants showed higher photosynthetic rates for a given N or P when compared with relationships from the global data set. The best multiple regression for the pooled data set estimated Vcmax and Jmax from NDW and S. However, the best regression for different vegetation types varied, suggesting that the scaling of photosynthesis with leaf traits changed with vegetation types. A new model is presented representing independent constraints by N and P on photosynthesis, which can be evaluated with or without interactions with S. It assumes that limitation of photosynthesis will result from the least abundant nutrient, thereby being less sensitive to the allocation of the non‐limiting nutrient to non‐photosynthetic pools. The model predicts an optimum proportionality for N and P, which is distinct for Vcmax and Jmax and inversely proportional to S. Initial tests showed the model to predict Vcmax and Jmax successfully for other tropical forests characterized by a range of different foliar N and P concentrations.  相似文献   
4.
5.
6.
An attempt is made to explain the tendency to excessive wiltingin scabrous diminutive, a pepper mutant. For this, mutant andnormal plants were compared with respect to leaf anatomy, transpirationof whole plants and detached drying leaves, density and openingof stomata, staining of potassium in epidermal cells and rootpressure. A much greater proportion of intracellular space was found inthe mutant leaf which contains fewer and smaller mesophyll cellsthan the normal plant. The anticlinal walls of the epidermisof the mutant leaf were almost straight whereas those of thenormal were wavy. Transpiration per unit leaf area of wholeplants, percentage of stomata open both day and night, and waterloss from detached drying leaves were all higher in the mutant.Potassium staining in guard cells was similar in both planttypes, slightly less in darkness and marginally higher in light.The subsidiary cells of normal leaves did not stain at all,but those of the mutant leaves stained heavily in both lightand darkness. Root pressure was lower in the mutant. Possible explanations for the tendency of the pepper mutantto wilt are discussed.  相似文献   
7.
8.
9.
A simple ‘big leaf’ ecosystem gas exchange model was developed, using eddy covariance data collected at an undisturbed tropical rainforest in south-western Amazonia (Brazil). The model used mechanistic equations of canopy biochemistry combined with an empirical stomatal model describing responses to light, temperature and humidity. After calibration, the model was driven using hourly data from a weather station at the top of the tower at the measurement site, yielding an estimate of gross primary productivity (annual photosynthesis) in 1992/1993 of about 200 mol C m?2 year ?. Although incoming photon flux density emerged as the major control on photosynthesis in this forest, at a given PAR CO2 assimilation rates were higher in the mornings than in the afternoons. This was attributable to stomatal closure in the afternoon in response to increasing canopy-to-air vapour pressure differences. Although most morning gas exchange was clearly limited by the rate of electron transport, afternoon gas exchange was generally observed to be very nearly co-limited by both Rubisco activity (Vmax) and electron transport rate. The sensitivity of the model to changes in nitrogen allocation showed that the modelled ratio of Vmax to electron transport (Jmax) served nearly to maximize the annual carbon gain, and indeed, would have resulted in almost maximum annual carbon gain at the pre-industrial revolution atmospheric CO2 concentration of 27 Pa. Modelled gross primary productivity (GPP) was somewhat lower at 27 Pa, being about 160 mol C m?2 year?1. The model suggests that, in the absence of any negative feedbacks on GPP, future higher concentrations of atmospheric CO2 will continue to increase the GPP of this rainforest, up to about 230 mol C m?2 year?1 at 70 Pa.  相似文献   
10.
  • 1 Eddy covariance measurements of CO2 flux, based on four and six week campaigns in Rondôdnia, Brazil, have been used in conjunction with a model to scale up data to a whole year, and thus estimate the carbon balance of the tropical forest ecosystem, and the changes in carbon balance expected from small interannual variations in climatological conditions.
  • 2 One possible source of error in this estimation arises from the difficulty in measuring fluxes under stably stratified meteorological conditions, such as occur frequently at night. Flux may be ‘lost’ because of low velocity advection, caused by nocturnal radiative cooling at sites on raised ground. Such effects may be detected by plotting the net ecosystem flux of CO2, Feco is a function of wind speed. If flux is ‘lost’ then Feco is expected to decline with wind speed. In the present data set, this did not occur, and Feco was similar to the nocturnal flux estimated independently from chamber measurements.
  • 3 The model suggests that in 1992/3, the Gross Primary Productivity (GPP) was 203.3 mol C m?2 y?1 and ecosystem respiration was 194.8 mol C m?2 y?1, giving an ecosystem carbon balance of 8.5 mol C m?2 y?1, equivalent to a sink of 1.0 ton C ha?1 y?1. However, the sign and magnitude of this figure is very sensitive to temperature, because of the strong influence of temperature on respiration.
  • 4 The model also suggests that the effect of temperature on the net carbon balance is strongly dependent on the partial pressure of CO2.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号