首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   33篇
  2022年   6篇
  2021年   8篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   12篇
  2014年   14篇
  2013年   16篇
  2012年   13篇
  2011年   17篇
  2010年   14篇
  2009年   15篇
  2008年   10篇
  2007年   6篇
  2006年   14篇
  2005年   13篇
  2004年   13篇
  2003年   9篇
  2002年   8篇
  2001年   9篇
  2000年   8篇
  1999年   16篇
  1998年   8篇
  1996年   7篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   2篇
  1979年   10篇
  1978年   11篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   6篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有353条查询结果,搜索用时 31 毫秒
1.
This cross-sectional study evaluated the relationship of physical fitness, hormone replacement therapy (HRT), and hemostatic profiles at rest and after an acute bout of maximal exercise in 48 healthy postmenopausal women. Subjects were categorized by fitness and HRT user status into four groups: unfit nonusers, fit nonusers, unfit users, and fit users. Fibrinolytic variables tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) activity, and antigen and prothrombin fragment 1 + 2, a molecular marker of in vivo thrombin generation, were measured before and after maximal exercise. Fibrinogen was also measured at rest. Higher tPA and lower PAI-1 activities (P <0.05) were seen in HRT users and fit groups. tPA and PAI-1 antigens were lower in HRT and fit groups (P <0.05) but not after correction for body mass index. Prothrombin fragment 1 + 2 was lower in the fit groups regardless of HRT status (P <0.05). Fibrinogen was similar in all groups. Favorable hemostatic profiles were observed in physically fit compared with unfit women, especially in HRT nonusers. Thus fitness is more strongly related to these hemostatic risk factors compared with HRT since HRT did not affect these hemostatic variables in fit postmenopausal women.  相似文献   
2.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.  相似文献   
3.
4.
5.
6.
Three new, unique cDNA sequences encoding isoforms of calmodulin (CaM) were isolated from an Arabidopsis cDNA library cloned in gt10. These sequences (ACaM-4, -5, and -6) represent members of the Arabidopsis CaM gene family distinct from the three DNA sequences previously reported. ACaM-4 and -6 encode full-length copies of CaM mRNAs of ca. 0.75 kb. The ACaM-5 sequence encodes a partial length copy of CaM mRNA that is lacking sequences encoding the amino-terminal 10 amino acids of mature CaM and the initiator methionine. The derived amino acid sequence of ACaM-5 is identical to the sequences encoded by two of the previously characterized ACaM cDNAs, and is identical to TCH-1 mRNA, whose accumulation was increased by touch stimulation. The polypeptides encoded by ACaM-4 and -6 differ from that encoded by ACaM-5 by six and two amino acid substititions, respectively. Most of the deduced amino acid sequence substitutions in the Arabidopsis CaM isoforms occurred in the fourth Ca2+-binding domain. Polymerase chain reaction amplification assays of ACaM-4, -5 and -6 mRNA sequences indicated that each accumulated in Arabidopsis leaf RNA fractions, but only ACaM-4 and -5 mRNAs were detected in silique total RNA. The six different CaM cDNA sequences each hybridize with unique Eco RI restriction fragments in genomic Southern blots of Arabidopsis DNA, indicating that these sequences were derived from distinct structural genes. Our results suggest that CaM isoforms in Arabidopsis may have evolved to optimize the interaction of this Ca2+-receptor protein with specific subsets of response elements.  相似文献   
7.
8.
9.
Diastolic mechanical oscillations of right ventricular rabbit papillary muscles investigated at 15 degrees C in the perfusion chamber were analysed using a relaxation model with 6 parameters. From this analysis follows that the first diastolic oscillation amplitude plotted against the driving interval ("interval amplitude curve" of the first diastolic oscillation) shows tow maxima thus differing from the shape of the interval strength curve of the preceding driven contraction. It is concluded that the amplitude of diastolic oscillations is less determined by the Ca-amount released from the sarcoplasmic reticulum during the action potential than by the frequency of processes which effect the Ca release and the Ca-sequestration. The damping ratio varies within the range of tested driving intervals (0.36 to 10 s). After an extrasystole damping ratio and period of diastolic oscillation are diminished compared with the values after regularly driven contractions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号