首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  1969年   1篇
  1943年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
Sensitive and accurate RT-qPCR tests are the primary diagnostic tools to identify SARS-CoV-2-infected patients. While many SARS-CoV-2 RT-qPCR tests are available, there are significant differences in test sensitivity, workflow (e.g. hands-on-time), gene targets and other functionalities that users must consider. Several publicly available protocols shared by reference labs and public health authorities provide useful tools for SARS-CoV-2 diagnosis, but many have shortcomings related to sensitivity and laborious workflows. Here, we describe a series of SARS-CoV-2 RT-qPCR tests that are originally based on the protocol targeting regions of the RNA-dependent RNA polymerase (RdRp) and envelope (E) coding genes developed by the Charité Berlin. We redesigned the primers/probes, utilized locked nucleic acid nucleotides, incorporated dual probe technology and conducted extensive optimizations of reaction conditions to enhance the sensitivity and specificity of these tests. By incorporating an RNase P internal control and developing multiplexed assays for distinguishing SARS-CoV-2 and influenza A and B, we streamlined the workflow to provide quicker results and reduced consumable costs. Some of these tests use modified enzymes enabling the formulation of a room temperature-stable master mix and lyophilized positive control, thus increasing the functionality of the test and eliminating cold chain shipping and storage. Moreover, a rapid, RNA extraction-free version enables high sensitivity detection of SARS-CoV-2 in about an hour using minimally invasive, self-collected gargle samples. These RT-qPCR assays can easily be implemented in any diagnostic laboratory and can provide a powerful tool to detect SARS-CoV-2 and the most common seasonal influenzas during the vaccination phase of the pandemic.  相似文献   
2.

Objectives

The aims of this study were to test the utility of benchtop NGS platforms for NIPT for trisomy 21 using previously published z score calculation methods and to optimize the sample preparation and data analysis with use of in silico and physical size selection methods.

Methods

Samples from 130 pregnant women were analyzed by whole genome sequencing on benchtop NGS systems Ion Torrent PGM and MiSeq. The targeted yield of 3 million raw reads on each platform was used for z score calculation. The impact of in silico and physical size selection on analytical performance of the test was studied.

Results

Using a z score value of 3 as the cut-off, 98.11% - 100% (104-106/106) specificity and 100% (24/24) sensitivity and 99.06% - 100% (105-106/106) specificity and 100% (24/24) sensitivity were observed for Ion Torrent PGM and MiSeq, respectively. After in silico based size selection both platforms reached 100% specificity and sensitivity. Following the physical size selection z scores of tested trisomic samples increased significantly—p = 0.0141 and p = 0.025 for Ion Torrent PGM and MiSeq, respectively.

Conclusions

Noninvasive prenatal testing for chromosome 21 trisomy with the utilization of benchtop NGS systems led to results equivalent to previously published studies performed on high-to-ultrahigh throughput NGS systems. The in silico size selection led to higher specificity of the test. Physical size selection performed on isolated DNA led to significant increase in z scores. The observed results could represent a basis for increasing of cost effectiveness of the test and thus help with its penetration worldwide.  相似文献   
3.
Recently, the gene coding for a new beta-glucuronidase enzyme has been identified and cloned from Streptococcus equi subsp. zooepidemicus. This is another report of a beta-glucuronidase gene cloned from bacterial species. The ORF Finder analysis of a sequenced DNA (EMBL, AJ890474) revealed a presence of 1,785 bp large ORF potentially coding for a 594 aa protein. Three protein families in (Pfam) domains were identified using the Conserved Domain Database (CDD) analysis: Pfam 02836, glycosyl hydrolases family 2, triose phosphate isomerase (TIM) barrel domain; Pfam 02837, glycosyl hydrolases family 2, sugar binding domain; and Pfam 00703, glycosyl hydrolases family 2, immunoglobulin-like beta-sandwich domain. To gain more insight into the enzymatic activity, the domains were used to generate a bootstrapped unrooted distance tree using ClustalX. The calculated distances for two domains, TIM barrel domain, and sugar-binding domain were comparable and exhibited similarity pattern based on function and thus being in accordance with recently published works confirming beta-glucuronidase activity of the enzyme. The calculated distances and the tree arrangement in the case of centrally positioned immonoglobulin-like beta-sandwich domain were somewhat higher when compared to other two domains but clustering with other beta-glucuronidases was rather clear. Nine proteins, including beta-glucuronidases, beta-galactosidase, and mannosidase were selected for multiple alignment and subsequent distance tree creation.  相似文献   
4.
Padlock probes (PLPs) are long oligonucleotides, whose ends are complementary to adjacent target sequences. Upon hybridization to the target, the two ends are brought into contact, allowing PLP circularization by ligation. PLPs provide extremely specific target recognition, which is followed by universal amplification and microarray detection. Since target recognition is separated from downstream processing, PLPs enable the development of flexible and extendable diagnostic systems, targeting diverse organisms. To adapt padlock technology for diagnostic purposes, we optimized PLP design to ensure high specificity and eliminating ligation on non-target sequences under real-world assay conditions. We designed and tested 11 PLPs to target various plant pathogens at the genus, species and subspecies levels, and developed a prototype PLP-based plant health chip. Excellent specificity was demonstrated toward the target organisms. Assay background was determined for each hybridization using a no-target reference sample, which provided reliable and sensitive identification of positive samples. A sensitivity of 5 pg genomic DNA and a dynamic range of detection of 100 were observed. The developed multiplex diagnostic system was validated using genomic DNAs of characterized isolates and artificial mixtures thereof. The demonstrated system is adaptable to a wide variety of applications ranging from pest management to environmental microbiology.  相似文献   
5.
6.
Wilms'' tumour (WT) is a pediatric tumor of the kidney that arises via failure of the fetal developmental program. The absence of identifiable mutations in the majority of WTs suggests the frequent involvement of epigenetic aberrations in WT. We therefore conducted a genome-wide analysis of promoter hypermethylation in WTs and identified hypermethylation at chromosome 5q31 spanning 800 kilobases (kb) and more than 50 genes. The methylated genes all belong to α-, β-, and γ-protocadherin (PCDH) gene clusters (Human Genome Organization nomenclature PCDHA@, PCDHB@, and PCDHG@, respectively). This demonstrates that long-range epigenetic silencing (LRES) occurs in developmental tumors as well as in adult tumors. Bisulfite polymerase chain reaction analysis showed that PCDH hypermethylation is a frequent event found in all Wilms'' tumor subtypes. Hypermethylation is concordant with reduced PCDH expression in tumors. WT precursor lesions showed no PCDH hypermethylation, suggesting that de novo PCDH hypermethylation occurs during malignant progression. Discrete boundaries of the PCDH domain are delimited by abrupt changes in histone modifications; unmethylated genes flanking the LRES are associated with permissive marks which are absent from methylated genes within the domain. Silenced genes are marked with non-permissive histone 3 lysine 9 dimethylation. Expression analysis of embryonic murine kidney and differentiating rat metanephric mesenchymal cells demonstrates that Pcdh expression is developmentally regulated and that Pcdhg@ genes are expressed in blastemal cells. Importantly, we show that PCDHs negatively regulate canonical Wnt signalling, as short-interfering RNA–induced reduction of PCDHG@ encoded proteins leads to elevated β-catenin protein, increased β-catenin/T-cell factor (TCF) reporter activity, and induction of Wnt target genes. Conversely, over-expression of PCDHs suppresses β-catenin/TCF-reporter activity and also inhibits colony formation and growth of cancer cells in soft agar. Thus PCDHs are candidate tumor suppressors that modulate regulatory pathways critical in development and disease, such as canonical Wnt signaling.  相似文献   
7.
The DNA sequence of small cryptic plasmid pAG20 in Acetobacter aceti was determined at 3064 bp with 51.6% GC pairs. The plasmid encoded a 186 amino acid protein which is important for plasmid replication in Gram-negative bacteria except Escherichia coli. Two 21 bp large direct repeat sequence 1 and two 13 bp direct repeat sequence 2 were determined in the regulation region upstream from gene encoded Rep protein. Vector pAG24 with kanamycin gene and two deletion derivatives pAG25 and pAG26 without rep gene from plasmid pAG20 were constructed. Plasmid pAG24 was replicated in a broad host range like E. coli, Acetobacter pasteurianus, A. aceti, Comanomonas spp., Serratia marcescens, and Shigella spp.  相似文献   
8.
Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1–V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing.  相似文献   
9.
10.
The giant liver fluke, Fascioloides magna, a liver parasite of free-living and domestic ruminants of Europe and North America, was analysed in order to determine the origin of European populations and to reveal the biogeography of this originally North American parasite on the European continent. The variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384bp) and nicotinamide dehydrogenase subunit I (nad1; 405bp) were used. Phylogenetic trees and haplotype networks were constructed and the level of genetic structuring was evaluated using population genetic tools. In F. magna individuals originating from all European foci of infection (Italy, Czech Republic and Danube floodplain forests involving the territories of Slovakia, Hungary and Croatia) and from four of five major North American enzootic areas, 16 cox1 and 18 nad1 haplotypes were determined. The concatenated sequence set produced 22 distinct haplotypes. The European fluke populations were less diverse than those from North America in that they contained proportionately fewer haplotypes (eight), while a more substantial level of genetic diversity and a greater number of haplotypes (15) were recorded in North America. Only one haplotype was shared between the European (Italy) and North American (USA/Oregon and Canada/Alberta) flukes, supporting a western North American origin of the Italian F. magna population. Haplotypes found in Italy were distinct from those determined in the remaining European localities which indicates that introduction of F. magna to the European continent occurred more than once. In the Czech focus of infection, a south-eastern USA origin was revealed. Identical haplotypes, common to parasites from the Czech Republic and from an expanding focus in Danube floodplain forests, implies that the introduction of F. magna to the Danube region came from an already established Czech focus of infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号