首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   5篇
  2022年   1篇
  2021年   2篇
  2016年   1篇
  2015年   6篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1988年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Membrane traffic requires vesicles to fuse with a specific target, and SNARE proteins and Rab/Ypt GTPases contribute to this specificity. In the yeast Saccharomyces cerevisae, the Rab/Ypt GTPase Ypt6p is required for fusion of endosome-derived vesicles with the late Golgi. We have shown previously that activation of Ypt6p depends on its exchange factor, Ric1p-Rgp1p, a peripheral membrane protein complex restricted to the Golgi. We show here that a conserved trimeric protein complex, VFT (Vps52/53/54), binds directly to Ypt6p:GTP. Localization of VFT to the Golgi requires Ypt6p, but is unaffected in gos1 and tlg1 mutants, in which late Golgi integral membrane proteins, including SNAREs, are mislocalized. The VFT complex also binds directly to the N-terminal domain of the SNARE Tlg1p, both in vitro and in vivo, in a Ypt6p-independent manner. We suggest that the VFT complex links vesicles containing Tlg1p to their target, which is defined by the local activation of Ypt6p.  相似文献   
2.
The interaction of rabbit muscle phosphorylase kinase (EC 2.7.1.38) with human erythrocyte membranes was investigated. It was found that at pH 7.0 the kinase binds to the inner face of the erythrocyte membrane (inside-out vesicles) and that this binding is Ca2+- and Mg2+-dependent. The sharpest increase in the binding reaction occurs at concentrations between 70 and 550 nM free Ca2+. Erythrocyte ghost or right-side out erythrocyte vesicles showed a significantly lower capacity to interact with phosphorylase kinase. Autophosphorylated phosphorylase kinase shows a similar Ca2+-dependent binding profile, while trypsin activation of the kinase and calmodulin decrease the original binding capacity by about 50%. Heparin (200 μg/ml) and high ionic strength (50 mM NaCl) almost completely blocks enzyme-membrane interaction; glycogen does not affect the interaction.  相似文献   
3.
4.
Two membrane proteins were identified through their genetic interaction with the nucleoporin Nup84p and shown to participate in nuclear envelope morphogenesis in yeast. One component is a known sporulation factor Spo7p, and the other, Nem1p, a novel protein whose C-terminal domain is conserved during eukaryotic evolution. Spo7p and Nem1p localize to the nuclear/ER membrane and behave biochemically as integral membrane proteins. Nem1p binds to Spo7p via its conserved C-terminal domain. Although cells without Spo7p or Nem1p are viable, they exhibit a drastically altered nuclear morphology with long, pore-containing double nuclear membrane extensions. These protrusions emanate from a core nucleus which contains the DNA, and penetrate deeply into the cytoplasm. Interestingly, not only Spo7(-) and Nem1(-), but also several nucleoporin mutants are defective in sporulation. Thus, Spo7p and Nem1p, which exhibit a strong genetic link to nucleoporins of the Nup84p complex, fulfil an essential role in formation of a spherical nucleus and meiotic division.  相似文献   
5.

Object

The potential imbalance between malpractice liability cost and quality of care has been an issue of debate. We investigated the association of malpractice liability with unfavorable outcomes and increased hospitalization charges in cranial neurosurgery.

Methods

We performed a retrospective cohort study involving patients who underwent cranial neurosurgical procedures from 2005-2010, and were registered in the National Inpatient Sample (NIS) database. We used data from the National Practitioner Data Bank (NPDB) from 2005 to 2010 to create measures of volume and size of malpractice claim payments. The association of the latter with the state-level mortality, length of stay (LOS), unfavorable discharge, and hospitalization charges for cranial neurosurgery was investigated.

Results

During the study period, there were 189,103 patients (mean age 46.4 years, with 48.3% females) who underwent cranial neurosurgical procedures, and were registered in NIS. In a multivariable regression, higher number of claims per physician in a state was associated with increased ln-transformed hospitalization charges (beta 0.18; 95% CI, 0.17 to 0.19). On the contrary, there was no association with mortality (OR 1.00; 95% CI, 0.94 to 1.06). We observed a small association with unfavorable discharge (OR 1.09; 95% CI, 1.06 to 1.13), and LOS (beta 0.01; 95% CI, 0.002 to 0.03). The size of the awarded claims demonstrated similar relationships. The average claims payment size (ln-transformed) (Pearson’s rho=0.435, P=0.01) demonstrated a positive correlation with the risk-adjusted hospitalization charges but did not demonstrate a correlation with mortality, unfavorable discharge, or LOS.

Conclusions

In the present national study, aggressive malpractice environment was not correlated with mortality but was associated with higher hospitalization charges after cranial neurosurgery. In view of the association of malpractice with the economics of healthcare, further research on its impact is necessary.  相似文献   
6.

Object

Randomized trials have demonstrated a survival benefit for endovascular treatment of ruptured cerebral aneurysms. We investigated the association of surgical clipping and endovascular coiling with outcomes in subarachnoid hemorrhage (SAH) patients in a real-world regional cohort.

Methods

We performed a cohort study involving patients with ruptured cerebral aneurysms, who underwent surgical clipping, or endovascular coiling from 2009–2013 and were registered in the Statewide Planning and Research Cooperative System (SPARCS) database. An instrumental variable analysis was used to investigate the association of treatment technique with outcomes.

Results

Of the 4,098 patients undergoing treatment, 2,585 (63.1%) underwent coiling, and 1,513 (36.9%) underwent clipping. Using an instrumental variable analysis, we did not identify a difference in inpatient mortality [marginal effect (ME), -0.56; 95% CI, -1.03 to 0.02], length of stay (LOS) (ME, 1.72; 95% CI, -3.39 to 6.84), or the rate of 30-day readmissions (ME, -0.30; 95% CI, -0.82 to 0.22) between the two treatment techniques for patients with SAH. Clipping was associated with a higher rate of discharge to rehabilitation (ME, 0.63; 95% CI, 0.24 to 1.01). In sensitivity analysis, mixed effect regression, and propensity score adjusted regression models demonstrated identical results.

Conclusions

Using a comprehensive all-payer cohort of patients in New York State presenting with aneurysmal SAH we did not identify an association of treatment method with mortality, LOS or 30-day readmission. Clipping was associated with a higher rate of discharge to rehabilitation.  相似文献   
7.
In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling.  相似文献   
8.
Excitation-contraction coupling in skeletal muscle involves conformational coupling between the dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) at junctions between the plasma membrane and sarcoplasmic reticulum. In an attempt to find which regions of these proteins are in close proximity to one another, we have constructed a tandem of cyan and yellow fluorescent proteins (CFP and YFP, respectively) linked by a 23-residue spacer, and measured the fluorescence resonance energy transfer (FRET) of the tandem either in free solution or after attachment to sites of the alpha1S and beta1a subunits of the DHPR. For all of the sites examined, attachment of the CFP-YFP tandem did not impair function of the DHPR as a Ca2+ channel or voltage sensor for excitation-contraction coupling. The free tandem displayed a 27.5% FRET efficiency, which decreased significantly after attachment to the DHPR subunits. At several sites examined for both alpha1S (N-terminal, proximal II-III loop of a two fragment construct) and beta1a (C-terminal), the FRET efficiency was similar after expression in either dysgenic (alpha1S-null) or dyspedic (RyR1-null) myotubes. However, compared with dysgenic myotubes, the FRET efficiency in dyspedic myotubes increased from 9.9 to 16.7% for CFP-YFP attached to the N-terminal of beta1a, and from 9.5 to 16.8% for CFP-YFP at the C-terminal of alpha1S. Thus, the tandem reporter suggests that the C terminus of alpha1S and the N terminus of beta1a may be in close proximity to the ryanodine receptor.  相似文献   
9.
Excitation-contraction coupling in skeletal muscle involves conformational coupling between dihydropyridine receptors (DHPRs) in the plasma membrane and ryanodine receptors (RyRs) in the sarcoplasmic reticulum. However, it remains uncertain what regions, if any, of the two proteins interact with one another. Toward this end, it would be valuable to know the spatial interrelationships of DHPRs and RyRs within plasma membrane/sarcoplasmic reticulum junctions. Here we describe a new approach based on metabolic incorporation of biotin into targeted sites of the DHPR. To accomplish this, cDNAs were constructed with a biotin acceptor domain (BAD) fused to selected sites of the DHPR, with fluorescent protein (XFP) attached at a second site. All of the BAD-tagged constructs properly targeted to junctions (as indicted by small puncta of XFP) and were functional for excitation-contraction coupling. To determine whether the introduced BAD was biotinylated and accessible to avidin (approximately 60 kDa), myotubes were fixed, permeablized, and exposed to fluorescently labeled avidin. Upon expression in beta1-null or dysgenic (alpha1S-null) myotubes, punctate avidin fluorescence co-localized with the XFP puncta for BAD attached to the beta1a N- or C-terminals, or the alpha1S N-terminal or II-III loop. However, BAD fused to the alpha1S C-terminal was inaccessible to avidin in dysgenic myotubes (containing RyR1). In contrast, this site was accessible to avidin when the identical construct was expressed in dyspedic myotubes lacking RyR1. These results indicate that avidin has access to a number of sites of the DHPR within fully assembled (RyR1-containing) junctions, but not to the alpha1S C-terminal, which appears to be occluded by the presence of RyR1.  相似文献   
10.
The skeletal muscle dihydropyridine receptor (DHPR) in the t-tubular membrane serves as the Ca2+ channel and voltage sensor for excitation-contraction (EC) coupling, triggering Ca2+ release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR). The two proteins appear to be physically linked, and both the α1S and β1a subunits of the DHPR are essential for EC coupling. Within α1S, cytoplasmic domains of importance include the I-II loop (to which β1a binds), the II-III and III-IV loops, and the C terminus. However, the spatial relationship of these domains to one another has not been established. Here, we have taken the approach of measuring FRET between fluorescent proteins inserted into pairs of α1S cytoplasmic domains. Expression of these constructs in dyspedic (RyR1 null) and dysgenic (α1S null) myotubes was used to test for function and targeting to plasma membrane/SR junctions and to test whether the presence of RyR1 caused altered FRET. We found that in the absence of RyR1, measureable FRET occurred between the N terminus and C terminus (residue 1636), and between the II-III loop (residue 626) and both the N and C termini; the I-II loop (residue 406) showed weak FRET with the II-III loop but not with the N terminus. Association with RyR1 caused II-III loop FRET to decrease with the C terminus and increase with the N terminus and caused I-II loop FRET to increase with both the II-III loop and N terminus. Overall, RyR1 appears to cause a substantial reorientation of the cytoplasmic α1S domains consistent with their becoming more closely packed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号