首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   51篇
  2022年   4篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   10篇
  2015年   18篇
  2014年   17篇
  2013年   28篇
  2012年   40篇
  2011年   42篇
  2010年   18篇
  2009年   16篇
  2008年   20篇
  2007年   21篇
  2006年   22篇
  2005年   33篇
  2004年   23篇
  2003年   11篇
  2002年   32篇
  2001年   17篇
  2000年   18篇
  1999年   14篇
  1998年   4篇
  1997年   2篇
  1996年   7篇
  1995年   2篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
  1970年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有495条查询结果,搜索用时 31 毫秒
1.
The processing of a unique uracil in DNA has been studied in mammalian cells. A synthetic oligodeoxyribonucleotide carrying a potential Bgl II restriction site, where one base has been substituted with a uracil, was inserted in the early intron of SV40 genome. Various heteroduplexes were constructed in such a manner that the restitution of an active Bgl II restriction site corresponds in each case to the specific substitution of the uracil by one of the four bases normally present in the DNA. DNA cuts by this restriction enzyme in one or several constructed heteroduplexes immediately determine the type of base pair substitution produced at the site of the U residue. When the uracil is inserted opposite a purine it is fully repaired; when facing a guanine it is replaced by a cytosine and opposite an adenine it is replaced by a thymine. These results indicate the error-free repair of uracil when it appears in the cell with the usual mechanisms such as cytosine deamination or incorporation of dUTP in place of dTTP during replication. When the uracil is inserted opposite a pyrimidine no error free repair at all is detected for U:C or U:T mismatches. It appears, moreover, that in approximately 18% of the cases U:T mismatch leads to a C:G base pairing. In the majority of the U:pyrimidine mismatches, mutations occur in the vicinity of the uracil, including base substitutions and frameshifts by addition of one or several bases.  相似文献   
2.
The effects of two drugs acting at the peripheral type benzodiazepine binding sites, PK 11195 and RO5-4864, were examined in shock-induced suppression of drinking in rats. These two compounds have opposite effects : RO5-4864 (3.1-1205 mg/kg i.p.) enhanced whereas PK 11195 (25-50 mg/kg i.p.) decreased the punished responding, and PK 11195 (6.25 mg/kg, a dose which did not alter the punished responding) blocked the proconflict action of RO5-4864 (6.25 and 12.5 mg/kg). The effects of RO5-4864 and PK 11195 were not antagonized by RO15-1788, a selective antagonist of the central benzodiazepine site. In addition, PK 11195 (6.25 mg/kg) did not reverse the proconflict effect of two beta-carbolines : beta-CEE and FG 7142. AS picrotoxin did not change the punished responding, these data imply that the effects of RO5-4864 and PK 11195 on the one hand and those of chlordiazepoxide and beta-carbolines on the other hand are differentially mediated and suggest that the peripheral type benzodiazepine binding sites are involved in this conflict model.  相似文献   
3.
[3H] R05-4864 binding sites have been characterized in kidney, heart, brain, adrenals and platelets in the rat. In all these organs the following order of potency in the R05-4864 displacement was found : R05-4864 > diazepam > clonazepam indicating that they correspond to the “peripheral type” of benzodiazepine binding sites. PK 11195, an isoquinoline carboxamide derivative, displaces [3H] R05-4864 from its binding sites in all the organs. PK 11195 was as potent as R05-4864 in the platelets, heart, adrenals, kidney and several brain regions (midbrain, hypothalamus, medulla + pons and hippocampus. However it was 5 to 10 times more effective in cortex and striatum. In conclusion PK 11195 might represent a new tool to elucidate the physiological relevance of “peripheral type” benzodiazepine binding sites and might help to discriminate the hypothetical subclasses of these binding sites.  相似文献   
4.
Malolactic fermentation is a secondary fermentation that many lactic acid bacteria can carry out when L-malate is present in the medium. The activation of the malolactic system in Lactococcus lactis is mediated by a locus we call mleR. Induction of the genes necessary to perform malolactic fermentation occurs only in bacteria with a functional copy of mleR. The mleR gene consists of one open reading frame capable of coding for a protein with a calculated molecular mass of 33,813 daltons. The amino acid sequence of the predicted MleR gene product is homologous to that of positive activators in gram-negative bacteria: LysR, IlvY gene products of Escherichia coli, MetR, CysB of Salmonella typhimurium, AmpR of Enterobacter cloacae, NodD of Rhizobium sp., and TrpI of Pseudomonas aeruginosa.  相似文献   
5.
Diacetyl is a by-product of pyruvate metabolism in Lactococcus lactis, where pyruvate is first converted to alpha-acetolactate, which is slowly decarboxylated to diacetyl in the presence of oxygen. L. lactis usually converts alpha-acetolactate to acetoin enzymatically, by alpha-acetolactate decarboxylase encoded by the aldB gene. We took advantage of the fact that this enzyme also has a central role in the regulation of branched-chain amino acids, to select spontaneous aldB mutants in an unbalanced concentration of leucine versus those of valine and isoleucine in the medium. Industrial dairy strains of L. lactis subsp. lactis biovar diacetylactis containing point mutations and deletions of aldB were isolated and characterized. Their growth in milk was not affected, but they rapidly accumulated a large amount of alpha-acetolactate instead of acetoin from citrate in milk. Under aerated condition, strains devoid of AldB produced about 10 times more diacetyl than did the parental strains.  相似文献   
6.
M Nardi  P Renault    V Monnet 《Journal of bacteriology》1997,179(13):4164-4171
The gene corresponding to the lactococcal oligopeptidase PepF1 (formerly PepF [V. Monnet, M. Nardi, A. Chopin, M.-C. Chopin, and J.-C. Gripon, J. Biol. Chem. 269:32070-32076, 1994]) is located on the lactose-proteinase plasmid of Lactococcus lactis subsp. cremoris NCDO763. Use of the pepF1 gene as a probe with different strains showed that pepF1 is present on the chromosome of Lactococcus lactis subsp. lactis IL1403, whereas there is a second, homologous gene, pepF2, on the chromosome of strain NCDO763. From hybridization, PCR amplification, and sequencing experiments, we deduced that (i) pepF1 and pepF2 exhibit 80% identity and encode two proteins which are 84% identical and (ii) pepF2 is included in an operon composed of three open reading frames and is transcribed from two promoters. The protein, encoded by the gene located downstream of pepF2, shows significant homology with methyltransferases. Analysis of the sequences flanking pepF1 and pepF2 indicates that only a part of the pepF2 operon is present on the plasmid of strain NCDO763, while the operon is intact on the chromosome of strain IL1403. Traces of several recombination events are visible on the lactose-proteinase plasmid. This suggests that the duplication of pepF occurred by recombination from the chromosome of an L. lactis subsp. lactis strain followed by gene transfer. We discuss the possible functions of PepF and the role of its amplification.  相似文献   
7.
The mechanism of metabolic energy production by malolactic fermentation in Lactococcus lactis has been investigated. In the presence of L-malate, a proton motive force composed of a membrane potential and pH gradient is generated which has about the same magnitude as the proton motive force generated by the metabolism of a glycolytic substrate. Malolactic fermentation results in the synthesis of ATP which is inhibited by the ionophore nigericin and the F0F1-ATPase inhibitor N,N-dicyclohexylcarbodiimide. Since substrate-level phosphorylation does not occur during malolactic fermentation, the generation of metabolic energy must originate from the uptake of L-malate and/or excretion of L-lactate. The initiation of malolactic fermentation is stimulated by the presence of L-lactate intracellularly, suggesting that L-malate is exchanged for L-lactate. Direct evidence for heterologous L-malate/L-lactate (and homologous L-malate/L-malate) antiport has been obtained with membrane vesicles of an L. lactis mutant deficient in malolactic enzyme. In membrane vesicles fused with liposomes, L-malate efflux and L-malate/L-lactate antiport are stimulated by a membrane potential (inside negative), indicating that net negative charge is moved to the outside in the efflux and antiport reaction. In membrane vesicles fused with liposomes in which cytochrome c oxidase was incorporated as a proton motive force-generating mechanism, transport of L-malate can be driven by a pH gradient alone, i.e., in the absence of L-lactate as countersubstrate. A membrane potential (inside negative) inhibits uptake of L-malate, indicating that L-malate is transported an an electronegative monoanionic species (or dianionic species together with a proton). The experiments described suggest that the generation of metabolic energy during malolactic fermentation arises from electrogenic malate/lactate antiport and electrogenic malate uptake (in combination with outward diffusion of lactic acid), together with proton consumption as result of decarboxylation of L-malate. The net energy gain would be equivalent to one proton translocated form the inside to the outside per L-malate metabolized.  相似文献   
8.
9.
The DNA‐binding protein TRF2 is essential for telomere protection and chromosome stability in mammals. We show here that TRF2 expression is activated by the Wnt/β‐catenin signalling pathway in human cancer and normal cells as well as in mouse intestinal tissues. Furthermore, β‐catenin binds to TRF2 gene regulatory regions that are functional in a luciferase transactivating assay. Reduced β‐catenin expression in cancer cells triggers a marked increase in telomere dysfunction, which can be reversed by TRF2 overexpression. We conclude that the Wnt/β‐catenin signalling pathway maintains a level of TRF2 critical for telomere protection. This is expected to have an important role during development, adult stem cell function and oncogenesis.  相似文献   
10.
In the present study, we investigated the therapeutic potential of a selective S1P1 receptor modulator, ponesimod, to protect and reverse autoimmune diabetes in non-obese diabetic (NOD) mice. Ponesimod was administered orally to NOD mice starting at 6, 10, 13 and 16 weeks of age up to 35 weeks of age or to NOD mice showing recent onset diabetes. Peripheral blood and spleen B and T cell counts were significantly reduced after ponesimod administration. In pancreatic lymph nodes, B lymphocytes were increased and expressed a transitional 1-like phenotype. Chronic oral ponesimod treatment efficiently prevented autoimmune diabetes in 6, 10 and 16 week-old pre-diabetic NOD mice. Treatment withdrawal led to synchronized disease relapse. Ponesimod did not inhibit the differentiation of autoreactive T cells as assessed by adoptive transfer of lymphocytes from treated disease-free NOD mice. In addition, it did not affect the migration, proliferation and activation of transgenic BDC2.5 cells into the target tissue. However, ponesimod inhibited spreading of the T cell responses to islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Treatment of diabetic NOD mice with ponesimod induced disease remission. However, here again, upon treatment cessation, the disease rapidly recurred. This recurrence was effectively prevented by combination treatment with a CD3 antibody leading to the restoration of self-tolerance. In conclusion, treatment with a selective S1P1 modulator in combination with CD3 antibody represents a promising therapeutic approach for the treatment of autoimmune diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号