首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   39篇
  国内免费   1篇
  561篇
  2024年   3篇
  2023年   11篇
  2022年   27篇
  2021年   16篇
  2020年   16篇
  2019年   24篇
  2018年   21篇
  2017年   16篇
  2016年   20篇
  2015年   27篇
  2014年   38篇
  2013年   51篇
  2012年   51篇
  2011年   35篇
  2010年   16篇
  2009年   21篇
  2008年   20篇
  2007年   14篇
  2006年   14篇
  2005年   10篇
  2004年   10篇
  2003年   14篇
  2002年   8篇
  2001年   9篇
  2000年   5篇
  1998年   4篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有561条查询结果,搜索用时 0 毫秒
1.
2.
Genetic analysis of Curvularia lunata IM 2901 transformants, previously obtained by electroporation with plasmid pAN7-1, was carried out. Isolates displayed several differences in hygromycin B resistance and their physiology. It was shown that plasmid pAN7-1 was integrated in different copy numbers and at different positions in the genome of the strains studied. Both the wild type and pAN7-1 isolates, when growing in liquid media, produced an extracellular emulsifying agent. The transformants differed in their growth kinetics, intensity of surfactant production and in the efficiency of cortexolone 11beta-hydroxylation, in comparison with the wild type. The micro-organisms varied in susceptibility to the lytic enzyme complex (Novozyme 234), which indicated the presence of differences in their cell wall composition and/or in architecture caused by an integrated plasmid pAN7-1.  相似文献   
3.
Aluminum is associated with etiology of many neurodegenerative diseases specially Alzheimer’s disease. Chronic exposure to aluminum via drinking water results in aluminum deposition in the brain that leads to cognitive deficits. The study aimed to determine the effects of aluminum on cholinergic biomarkers, i.e., acetylcholine level, free choline level, and choline acetyltransferase gene expression, and how cholinergic deficit affects novel object recognition and sociability in mice. Mice were treated with AlCl3 (250 mg/kg). Acetylcholine level, free choline level, and choline acetyltransferase gene expression were determined in cortex, hippocampus, and amygdala. The mice were subjected to behavior tests (novel object recognition and social novelty preference) to assess memory deficits. The acetylcholine level in cortex and hippocampus was significantly reduced in aluminum-treated animals, as compared to cortex and hippocampus of control animals. Acetylcholine level in amygdala of aluminum-treated animals remained unchanged. Free choline level in all the three brain parts was found unaltered in aluminum-treated mice. The novel object recognition memory was severely impaired in aluminum-treated mice, as compared to the control group. Similarly, animals treated with aluminum showed reduced sociability compared to the control mice group. Our study demonstrates that aluminum exposure via drinking water causes reduced acetylcholine synthesis in spite of normal free choline availability. This deficit is caused by reduced recycling of acetylcholine due to lower choline acetyltransferase level. This cholinergic hypofunction leads to cognitive and memory deficits. Moreover, hippocampus is the most affected brain part after aluminum intoxication.  相似文献   
4.
5.
Angiosperm reproductive development is a complex event that includes floral organ development, male and female gametophyte formation and interaction between the male and female reproductive organs for successful fertilization. Previous studies have revealed the redundant function of ATP binding cassette subfamily G (ABCG) transporters ABCG1 and ABCG16 in pollen development, but whether they are involved in other reproductive processes is unknown. Here we show that ABCG1 and ABCG16 were not only expressed in anthers and stamen filaments but also enriched in pistil tissues, including the stigma, style, transmitting tract and ovule. We further demonstrated that pistil‐expressed ABCG1 and ABCG16 promoted rapid pollen tube growth through their effects on auxin distribution and auxin flow in the pistil. Moreover, disrupted auxin homeostasis in stamen filaments was associated with defective filament elongation. Our work reveals the key functions of ABCG1 and ABCG16 in reproductive development and provides clues for identifying ABCG1 and ABCG16 substrates in Arabidopsis.  相似文献   
6.
Cadmium (Cd) is highly toxic metal for plant metabolic processes even in low concentration due to its longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of a Cd-tolerant phytobeneficial bacterial strain Bacillus sp. SDA-4, isolated, characterized and identified from Chakera wastewater reservoir, Faisalabad, Pakistan, together with spinach (as a test plant) under different Cd regimes. Spinach plants were grown with and without Bacillus sp. SDA-4 inoculation in pots filled with 0, 5 or 10 mg kg−1 CdCl2-spiked soil. Without Bacillus sp. SDA-4 inoculation, spinach plants exhibited reduction in biomass accumulation, antioxidative enzymes and nutrient retention. However, plants inoculated with Bacillus sp. SDA-4 revealed significantly augmented growth, biomass accumulation and efficiency of antioxidative machinery with concomitant reduction in proline and MDA contents under Cd stress. Furthermore, application of Bacillus sp. SDA-4 assisted the Cd-stressed plants to sustain optimal levels of essential nutrients (N, P, K, Ca and Mg). It was inferred that the characterized Cd-tolerant PGPR strain, Bacillus sp. SDA-4 has a potential to reduce Cd uptake and lipid peroxidation which in turn maintained the optimum balance of nutrients and augmented the growth of Cd-stressed spinach. Analysis of bioconcentration factor (BCF) and translocation factor (TF) revealed that Bacillus sp. SDA-4 inoculation with spinach sequestered Cd in rhizospheric zone. Research outcomes are important for understanding morpho-physio-biochemical attributes of spinach-Bacillus sp. SDA-4 synergy which might provide efficient strategies to decrease Cd retention in edible plants and/or bioremediation of Cd polluted soil colloids.  相似文献   
7.
Abstract

Biosynthesis of metal nanoparticles is an area of interest among researchers because of its eco-friendly approach. Current study focuses at biosynthesis of silver nanoparticles (AgNPs) and optimization of physico-chemical conditions to obtain mono-dispersed and stable AgNPs having antimicrobial activity. Initially Bacillus mojavensis BTCB15 produced silver nanoparticles (AgNPs) of 105?nm. Silver nanoparticles (AgNPs) were characterized by particle size analyzer, UV-Vis Spectroscopy, Fourier transforms infrared spectroscopy (FTIR), Atomic force microscopy (AFM), and X-ray diffraction (XRD). Whereas, under optimal conditions of temperature 55?°C, pH 8, addition of surfactant Tween 20, and metal ion K2SO4, about 104% size reduction was achieved with average size of 2.3nm. Molecular characterization revealed 98% sequence homology with Bacillus mojavensis. AgNPs exhibited antibacterial activity at concentrations ranging from 0.5 to 2.5?µg/µl against Escherichia coli BTCB03, Klebsiella pneumonia BTCB04, Acinetobacter sp. BTCB05, and Pseudomonas aeruginosa BTCB01 but none against Staphylococcus aureus BTCB02. Highest antibacterial activity was observed at 0.27?µg/µl and lowest at 0.05?µg/µl of AgNPs indicated by zone of inhibition. Conclusively, under optimum conditions, Bacillus mojavensis BTCB15 was able to produce AgNPs of 2.3?nm size and had antibacterial activity against multi drug resistant pathogens.  相似文献   
8.
A protocol has been developed for in vitro plant regeneration from a nodal explant of Dracaena sanderiana Sander ex Mast. Nodal explant showed high callus induction potentiality on MS medium supplemented with 6.78 μM 2,4-dichlorophenoxyacetic acid (2,4-D) followed by 46.5 μM chlorophenoxy acetic acid (CPA). The highest frequency of shoot regeneration (85%) and number of shoots per explant (5.6) were obtained on medium supplemented with 7.84 μM N6-benzylaminopurine (BA). Rooting was high on MS solid compared to liquid medium when added with 7.38 μM indole-3-butyric acid (IBA). Fifty percent of the roots were also directly rooted as microcuttings on soil rite, sand and peat mixture (1:1:1). In vitro and ex vitro raised plantlets were used for acclimatization. More than 90% of the plantlets was successfully acclimatized and established in plastic pots. Ex vitro transferred plantlets were normal without any phenotypic aberrations.  相似文献   
9.
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We therefore investigated molecular mechanisms involved in CXCR2-driven cancer progression by comparing CXCR2 positive and negative ovarian cancer cell lines. Stably CXCR2 transfected SKOV-3 cells had a faster growth rate as compared to control cells transfected with empty vector. Particularly, tumor necrosis factor (TNF), abundantly expressed in ovarian cancer, enhanced cell proliferation by decreasing the G0-G1 phase in CXCR2 transfected cells. TNF increased nuclear factor-κB (NF-κB) activity to a greater degree in CXCR2 transfected cells than control cells as well as provided a greater activation of IκB. CXCR2 transfected cells expressed higher levels of its proinflammatory ligands, CXCL1/2 and enhanced more proliferation, migration, invasion and colony formation. CXCR2 positive cells also activated more EGFR, which led to higher Akt activation. Enhanced NF-κB activity in CXCR2 positive cells was reduced by a PI3K/Akt inhibitor rather than an Erk inhibitor. CXCL1 added to CXCR2 positive cells led to an increased activation of IκB. CXCL1 also led to a significantly greater number of invasive cells in CXCR2 transfected cells, which was blocked by the NF-κB inhibitor, Bay 11-7082. In addition, enhanced cell proliferation in CXCR2 positive cells was more sensitive to CXCL1 antibody or an NF-κB inhibitor. Finally, CXCR2 transfection of parental cells increased CXCL1 promoter activity via an NF-κB site. Thus augmentation of proinflammatory chemokines CXCL1/2, by potentiating NF-κB activation through EGFR-transactivated Akt, contributes to CXCR2-driven ovarian cancer progression.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号