Biosurfactant production by Pseudomonas aeruginosa EBN-8 mutant was studied in shake flasks on separate wastes from canola, soybean and corn oil refineries. Of the substrates
tested, canola oil refinery waste (COD=20 g l−1) supplemented with sodium nitrate (at COD/N=20) showed the best microbial growth (4.50 g l−1) and rhamnolipid production (8.50 g l−1), at 10 d of incubation with the specific growth rate of 0.316 h−1 and specific product yield of 0.597 g g−1 h. Its cell-free supernatant showed the critical micelle dilution (CMD) of 150 and surface tension (ST) of 28.5 mN m−1. 相似文献
Extracellular vesicles are known as actual intermediaries of intercellular communications, such as biological signals and cargo transfer between different cells. A variety of cells release the exosomes as nanovesicular bodies. Exosomes contain different compounds such as several types of nucleic acids and proteins. In this study, we focused on exosomes in colorectal cancer as good tools that can be involved in various cancer-related processes. Furthermore, we summarize the advantages and disadvantages of exosome extraction methods and review related studies on the role of exosomes in colorectal cancer. Finally, we focus on reports available on relations between mesenchymal stem cell–derived exosomes and colorectal cancer. Several cancer-related processes such as cancer progression, metastasis, and drug resistance of colorectal cancer are related to the cargoes of exosomes. A variety of molecules, especially proteins, microRNAs, and long noncoding RNAs, play important roles in these processes. The microenvironment features, such as hypoxia, also have very important effects on the properties of the origin cell–derived exosomes. On the other hand, exosomes derived from colorectal cancer cells also interfere with cancer chemoresistance. Furthermore, today it is known that exosomes and their contents can likely be very effective in noninvasive colorectal cancer diagnosis and therapy. Thus, exosomes, and especially their cargoes, play different key roles in various aspects of basic and clinical research related to both progression and therapy of colorectal cancer. 相似文献
The ultimate goal of the Recommender System (RS) is to offer a proposal that is very close to the user's real opinion. Data clustering can be effective in increasing the accuracy of production proposals by the RS. In this paper, single-objective hybrid evolutionary approach is proposed for clustering items in the offline collaborative filtering RS. This method, after generating a population of randomized solutions, at each iteration, improves the population of solutions first by Genetic Algorithm (GA) and then by using the Gravitational Emulation Local Search (GELS) algorithm. Simulation results on standard datasets indicate that although the proposed hybrid meta-heuristic algorithm requires a relatively high run time, it can lead to more appropriate clustering of existing data and thus improvement of the Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Coverage criteria. 相似文献
International Journal of Peptide Research and Therapeutics - Klebsiella oxytoca is a gram-negative bacterium. It is opportunistic in nature and causes hospital acquired infections.... 相似文献
Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative, clonogenic and multipotent stem cells with a neural crest cell origin. Additionally, they can be collected with minimal invasiveness in comparison with other sources of mesenchymal stem cells (MSCs). Therefore, SHED could be a desirable option for potential therapeutic applications. In this study, SHEDs were established from enzyme-disaggregated deciduous dental pulp obtained from 6 to 9 year-old children. The cells had typical fibroblastoid morphology and expressed antigens characteristic of MSCs, STRO1, CD146, CD45, CD90, CD106 and CD166, but not the hematopoietic and endothelial markers, CD34 and CD31, as assessed by FACS analysis. Differentiation assessment revealed a strong osteogenic and adipogenic potential of SHEDs. In order to further evaluate the in vitro differentiation potential of SHED into neural cells, a simple short time growth factor-mediated induction was used. Immunofluorescence staining and flow cytometric analysis revealed that SHED rapidly expressed nestin and b-III tubulin, and later expressed intermediate neural markers. In addition, the intensity and percentages of nestin and b-III tubulin and mature neural markers (PSA-NCAM, NeuN, Tau, TH, or GFAP) increased significantly following treatment. Moreover, RT-PCR and Western blot analyses showed that the neural markers were strongly up-regulated after induction. In conclusion, these results provide evidence that SHED can differentiate into neural cells by the expression of a comprehensive set of genes and proteins that define neural-like cells in vitro. SHED cells might be considered as new candidates for the autologous transplantation of a wide variety of neurological diseases and neurotraumatic injuries. 相似文献
New copper(II) complexes of general empirical formula, [Cu(NNS)X] (NNS = anionic forms of the 2-acetylpyrazine Schiff bases of S-methyl- and S-benzyldithiocarbazate, Hapsme and Hapsbz) and X = Cl−, Br−, NCS− and NO3− have been synthesized and characterized. X-ray crystal structures of the free ligand, Hapsbz and the complexes, [Cu(apsbz)(NO3)]∞, [Cu(apsme)(NCS)]2 and [Cu(apsme)Cl]2 have been determined. In the solid state, the Schiff base, Hapsbz remains in its thione tautomeric form with the thione sulfur atom trans to the azomethine nitrogen atom. X-ray diffraction shows that the [Cu(apsbz)(NO3)]∞ complex is a novel coordination polymer in which one of the nitrogen atoms of the pyrazine ring bridges two adjacent copper(II) ions. The Schiff base is coordinated to the copper(II) ion in its iminothiolate form via the thiolate sulfur atom, the azomethine nitrogen atom and one of the pyrazine nitrogen atoms, the overall geometry of each copper atom in the polymer being close to a square-pyramid. The complexes, [Cu(apsme)X]2 (X = NCS−, Cl−) are dimers in which each copper atom adopts a five-coordinate near square-pyramidal geometry with an N3S2 coordination environment. The Schiff base coordinates as a uninegatively charged tridentate ligand chelating via the pyridine and azomethine nitrogen atoms and the thiolate sulfur atoms. A nitrogen atom of a unidentate thiocayanate or chloride ligand and a bridging sulfur atom from a second ligand completes the coordination sphere. Room temperature μeff values for the complexes in the solid state are in the range 1.70-2.0 μB typical of uncoupled or weakly coupled Cu(II) centres. Variable temperature susceptibility studies show that the chain complex displays weak ferromagnetic coupling across the pyrazine bridges, while the S-bridged dinuclear compounds display either weak ferromagnetic or weak antiferromagnetic coupling that relates to subtle bridging geometry differences. EPR studies of frozen DMF solutions give rather similar g and ACu values for all compounds indicative of Cu(dx2-y2) ground state orbitals on the Cu centers. 相似文献
In this research work, a systematic design of a novel anti-reflective layer using embedded plasmonic nanoparticles is investigated for a thin-film GaAs solar cell. First, an anti-reflective layer that is made from ITO or SiO2 is assumed in which Al nanoparticles are embedded inside them to manipulate the absorption and hence the photocurrent of a 500-nm GaAs solar cell. It is investigated that the Al nanoparticles embedded inside the anti-reflective coating improve the photocurrent of a GaAs solar cell. For instance, the 15.37 mA photocurrent is obtained for 500-nm bare GaAs cell, and it reached to 17.25 mA/cm2 and 20.18 mA/cm2 when an ITO anti-reflection is used with Al nanoparticles on top and inside that, respectively. It increases to 21.94 mA/cm2 and 24.98 mA/cm2 in the case of the anti-reflective layer made from SiO2 and Al nanoparticles at the top side or inside that, respectively. Finally, using a double anti-reflective layer that is made from SiO2-TiO2, the maximum photocurrents of 23.79 mA/cm2 and 24.68 mA /cm2 are obtained when Al nanoparticles are at the top side or inside that, respectively. The simulation results show that the embedding Al nanoparticles in the anti-reflective layer can improve the photocurrent of a thin-film GaAs solar cell.