首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  5篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1968年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Endothelial cells were harvested from bovine aorta and saphenous vein with collagenase and cultured in McCoy's 5a medium (modified GIBCO) supplemented with 10% fetal bovine serum. The cells were subcultured through 17 passages over 4 to 5 months. The growth properties in culture of the two cell types were compared. Morphological comparisons included phase microscopy and scanning and transmission electron microscopy. Comparisons with cultured aortic smooth-muscle cells were made using phase and scanning electron microscopy. No differences were found between cultured endothelial cells from aorta and saphenous vein. Differences in growth patterns in culture clearly distinguished both endothelial cell types from smooth-muscle cells. The presence of Weibel-Palade bodies identified the cells from both sources as endothelial.  相似文献   
2.
3.
Polymorphonuclear (PMN) leukocytes exposed to mechanical trauma in vitro will release enzymes both from azurophilic and specific granules at shear stress levels of between 75 and 150 dyn/cm2 for 10 min. In addition, at these shear stresses the leukocyte count in whole blood decreased only slightly and the number of ruptured leukocytes on Wright-stained blood films increased significantly. At higher shear stresses, enzyme release and leukocyte damage increased monotonically. Transmission electron microscopy evaluation of sheared PMNs revealed that remaining intact cells had minor morphological changes at stresses of 150 dyn/cm2. They were characterized by clublike cytoplasmic potrusions, spherical shape, and a circumferential distribution of cytoplasmic granules. At higher shear stresses (600 dyn/cm2) cell destruction was marked. Intact PMNs contained fewer cytoplasmic granules, a large number of vacuoles, and condensed nuclear chromatin. These studies show that PMN morphology and function are at least as sensitive to mechanical trauma as similar platelet alterations seen in other studies.  相似文献   
4.
Summary Endothelial cells were harvested from bovine aorta and saphenous vein with collagenase and cultured in McCoy's 5a medium (modified GIBCO) supplemented with 10% fetal bovine serum. The cells were subcultured through 17 passages over 4 to 5 months. The growth properties in culture of the two cell types were compared. Morphological comparisons included phase microscopy and scanning and transmission electron microscopy. Comparisons with cultured aortic smooth-muscle cells were made using phase and scanning electron microscopy. No differences were found between cultured endothelial cells from aorta and saphenous vein. Differences in growth patterns in culture clearly distinguished both endothelial cell types from smooth-muscle cells. The presence of Weibel-Palade bodies identified the cells from both sources as endothelial. This work was supproted by Grants HL-1330 and HL-17269 from NIH.  相似文献   
5.
Summary Smooth muscle cells (SMC) were cultured from atherosclerotic plaques and uninvolved arteries to determine if differences exist between growth characteristics or ultrastructure of the cultured cells. Eighteen aortic punch biopsies provided the uninvolved tissue, and 58 carotid plaques provided the atherosclerotic tissue. Eighty percent of the sample yielded viable cultured cells, which reached a maximum population doubling time during log phase growth of 72 h (seeding density=1.0×104 cells/cm2, 2nd passage). Growth characteristics of both normal and plaque-derived cells were the same in vitro. Growth rate declined with time in culture, and cell division ceased by the 5th or 6th passage. In culture, spindle shaped cells formed the “hill and valley” configuration typical of SMC. Plaquederived SMC were ultrastructurally similar to SMC from uninvolved vessel wall. Proliferative potential did not vary with age of sex, with method of culture, or with whether the cells were plaque derived or not. This study was supported in part by National Institutes of Health Grant HL-17269  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号