首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   10篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有77条查询结果,搜索用时 78 毫秒
1.
Bovine cardiac troponin containing approximately 3 mol P/mol protein could be separated into its subunits without loss of phosphate. Troponin I and troponin T each contain about 1.5 mol P/mol protein. In troponin I two phosphorylated serine residues could be localized in the N-terminal region by conversion of phosphoserine to S-ethylcysteine. They are located in adjacent positions in the following sequence: -Arg-Arg-Ser(P)-Ser(P)-Ala-Asn-Tyr-Tyr-Arg-Ala-Tyr-Ala-Thr-Glu-Pro- His-Ala-Lys. This sequence shows that the first phosphoserine residue in bovine cardiac troponin I occupies a homologous position to phosphoserine-20 of rabbit cardiac troponin I.  相似文献   
2.
The effects of the trichothecene mycotoxins (acetyl T-2 toxin, T-2 toxin, HT-2 toxin, palmityl T-2 toxin, diacetoxyscirpenol (DAS), deoxynivalenol (DON), and T-2 tetraol) on bovine platelet function were examined in homologous plasma stimulated with platelet activating factor (PAF). The mycotoxins inhibited platelet function with the following order of potency: acetyl T-2 toxin > palmityl T-2 toxin = DAS > HT-2 toxin = T-2 toxin. While T-2 tetraol was completely ineffective as an inhibitor, DON exhibited minimal inhibitory activity at concentrations above 10×10?4M. The stability of the platelet aggregates formed was significantly reduced in all mycotoxin treated platelets compared to that of the untreated PAF controls. It is suggested that the increased sensitivity of PAF stimulated bovine platelets to the more lipophilic mycotoxins may be related to their more efficient partitioning into the platelet membrane compared to the more hydrophilic compounds.  相似文献   
3.
During the period of COVID-19, the occurrences of mucormycosis in immunocompromised patients have increased significantly. Mucormycosis (black fungus) is a rare and rapidly progressing fungal infection associated with high mortality and morbidity in India as well as globally. The causative agents for this infection are collectively called mucoromycetes which are the members of the order Mucorales. The diagnosis of the infection needs to be performed as soon as the occurrence of clinical symptoms which differs with types of Mucorales infection. Imaging techniques magnetic resonance imaging or computed tomography scan, culture testing, and microscopy are the approaches for the diagnosis. After the diagnosis of the infection is confirmed, rapid action is needed for the treatment in the form of antifungal therapy or surgery depending upon the severity of the infection. Delaying in treatment declines the chances of survival. In antifungal therapy, there are two approaches first-line therapy (monotherapy) and combination therapy. Amphotericin B ( 1 ) and isavuconazole ( 2 ) are the drugs of choice for first-line therapy in the treatment of mucormycosis. Salvage therapy with posaconazole ( 3 ) and deferasirox ( 4 ) is another approach for patients who are not responsible for any other therapy. Adjunctive therapy is also used in the treatment of mucormycosis along with first-line therapy, which involves hyperbaric oxygen and cytokine therapy. There are some drugs like VT-1161 ( 5 ) and APX001A ( 6 ), Colistin, SCH 42427, and PC1244 that are under clinical trials. Despite all these approaches, none can be 100% successful in giving results. Therefore, new medications with favorable or little side effects are required for the treatment of mucormycosis.  相似文献   
4.
AR Boobis  MB Slade  C Stern  KM Lewis  DS Davies 《Life sciences》1981,29(14):1443-1448
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed.  相似文献   
5.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
6.
Several autoantibodies related to Type 1 diabetes mellitus and their corresponding autoantigens have been previously identified. While peptide antigens are more widely recognized, lipid antigens like sulfatides and gangliosides are also known epitopes for the diabetic humoral immune response. Islet cell antibodies (ICA) in Type 1 diabetes are heterogeneous immunoglobulins directed against selected antigens in the islets of Langerhans. Moreover, ICA may be the best predictive marker of disease in family members of patients with Type 1 diabetes. The aims of this study were: (1) to purify lipids from porcine pancreas that contain ICA epitopes; (2) to characterize these lipid antigens, and (3) to use the purified lipids in an assay to detect antibodies in patients with Type 1 diabetes. A unique family of 4 lysophospholipids, 1 fully characterized as lysophosphatidylmyoinositol, partially inhibited ICA staining, and therefore, were considered to be candidate antigens for an ICA immunoassay. Using a dot blot immunoassay, we detected antibodies directed against these phospholipids in 28 out of 46 (61%) diabetic sera, while detecting only 1 false positive out of 28 nondiabetic sera (3.6%; p < 0.0001 comparing diabetic vs. nondiabetic serum). Therefore, lysophospholipid immunoassay positivity is present in sera of Type 1 diabetic patients. Furthermore, we detected 15 out of 23 ICA-negative diabetic sera (65.2%), showing that our phospholipid immunoassay does not correlate with ICA positivity.  相似文献   
7.
8.
Mammalian cells have the ability to alter their gene expression in order to survive or adapt to a variety of environment stresses including hypoxic stress. Maintaining oxygen supply has been accepted as essential for cell survival and growth. To determine the cellular and molecular changes which take place under oxygen deprivation, an NS0 cell line producing a human-mouse chimeric antibody was cultured under hypoxic conditions (<1%). Various cellular parameters such as viability, productivity, metabolism, apoptosis and cell cycle were studied and notable changes were shown to be accompanied by changes in metabolic rates. When the cells where exposed to hypoxia for 48 h, cell growth was suppressed and cell death was detected. To better understand and explore the mechanisms underpinning these biological alterations and to identify the genes involved in the genetic reprogramming, genome-wide analyses were performed using GeneChip Mouse Genome arrays. The gene expression profiling generated by the microarray technique revealed that hypoxia, even in the early stages (12h), induces significant changes in gene expression in NS0 cells. The primary responses to hypoxia within the cells were: (1) the up-regulation of pathways such as glycolysis that ultimately lead to alternative routes of ATP generation and increased oxygen availability; and (2) the down-regulation of genes involved in purine/pyrimidine and one carbon pool metabolisms required for DNA and RNA synthesis. By combining gene expression and physiological changes under hypoxia, it was possible to explore the mechanisms of hypoxia-induced alterations in more depth.  相似文献   
9.
10.
We present QM/MM calculations that show differences in geometries of active sites of M(4) and H(4) isoforms of human LDH ligated with oxamate, pyruvate or L-lactate. As the consequence of these differences, binding isotope effects of the methyl hydrogen atoms of pyruvate and l-lactate may be used to experimentally distinguish these isoforms. Based on the FEP calculations we argue that L-lactate is a better candidate for the experimental studies. Our calculations of energies of interactions of ligands with the active site residues provide explanation for the observed experimentally sensitivity to inhibition of the M(4) isoenzyme isoform and pinpoint the differences to interactions of the ligand with the histidine residue. We conclude that pyruvate interacts much stronger in the active site of H(4) than M(4) isoform and that the latter interactions are weaker than with water molecules in the aqueous solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号