首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   15篇
  国内免费   1篇
  102篇
  2020年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   5篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1938年   1篇
  1934年   1篇
  1923年   1篇
  1890年   1篇
  1887年   1篇
  1875年   2篇
排序方式: 共有102条查询结果,搜索用时 0 毫秒
1.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
2.
Selection-induced mutations are nonrandom mutations that occur as specific and direct responses to environmental challenge. Examples of selection-induced mutations have been reported both in bacteria and in yeast. I previously showed (Hall 1988) that excisions of the mobile genetic element IS150 from within bglF are selection induced and argued that they occurred because they were potentially advantageous under the selective conditions employed. Mittler and Lenski (Mittler and Lenski 1992) have argued that such excisions are not selection induced but that they occur randomly in nondividing cells. Here I provide further evidence that IS150 excisions are induced by selection and that the excisions are immediately, rather than only potentially, advantageous to the cell. I also provide evidence that excisions, which Mittler and Lenski claim occur randomly in saturated broth cultures, actually occur after samples from those cultures are plated onto selective medium.   相似文献   
3.
An unprecedented outbreak of H5N1 highly pathogenic avian influenza (HPAI) has been reported for poultry in eight different Asian countries, including South Korea, since December 2003. A phylogenetic analysis of the eight viral genes showed that the H5N1 poultry isolates from South Korea were of avian origin and contained the hemagglutinin and neuraminidase genes of the A/goose/Guangdong/1/96 (Gs/Gd) lineage. The current H5N1 strains in Asia, including the Korean isolates, share a gene constellation similar to that of the Penfold Park, Hong Kong, isolates from late 2002 and contain some molecular markers that seem to have been fixed in the Gs/Gd lineage virus since 2001. However, despite genetic similarities among recent H5N1 isolates, the topology of the phylogenetic tree clearly differentiates the Korean isolates from the Vietnamese and Thai isolates which have been reported to infect humans. A representative Korean isolate was inoculated into mice, with no mortality and no virus being isolated from the brain, although high titers of virus were observed in the lungs. The same isolate, however, caused systemic infections in chickens and quail and killed all of the birds within 2 and 4 days of intranasal inoculation, respectively. This isolate also replicated in multiple organs and tissues of ducks and caused some mortality. However, lower virus titers were observed in all corresponding tissues of ducks than in chicken and quail tissues, and the histological lesions were restricted to the respiratory tract. This study characterizes the molecular and biological properties of the H5N1 HPAI viruses from South Korea and emphasizes the need for comparative analyses of the H5N1 isolates from different countries to help elucidate the risk of a human pandemic from the strains of H5N1 HPAI currently circulating in Asia.  相似文献   
4.
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.  相似文献   
5.
Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of most HPAI epizootics. However, vaccination of poultry was added as a control tool in 1995 and has been used during five epizootics. Over 113 billion doses of AI vaccine have been used in poultry from 2002 to 2010 as oil-emulsified, inactivated whole AIV vaccines (95.5%) and live vectored vaccines (4.5%). Over 99% of the vaccine has been used in the four H5N1 HPAI enzootic countries: China including Hong Kong (91%), Egypt (4.7%), Indonesia (2.3%), and Vietnam (1.4%) where vaccination programs have been nationwide and routine to all poultry. Ten other countries used vaccine in poultry in a focused, risk-based manner but this accounted for less than 1% of the vaccine used. Most vaccine “failures” have resulted from problems in the vaccination process; i.e., failure to adequately administer the vaccine to at-risk poultry resulting in lack of population immunity, while fewer failures have resulted from antigenic drift of field viruses away from the vaccine viruses. It is currently not feasible to vaccinate wild birds against H5N1 HPAI, but naturally occurring infections with H5 low pathogenicity avian influenza viruses may generate cross-protective immunity against H5N1 HPAI. The most feasible method to prevent and control H5N1 HPAI in wild birds is through control of the disease in poultry with use of vaccine to reduce environmental burden of H5N1 HPAIV, and eventual eradication of the virus in domestic poultry, especially in domestic ducks which are raised in enzootic countries on range or in other outdoor systems having contact with wild aquatic and periurban terrestrial birds.  相似文献   
6.
In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.  相似文献   
7.
8.
In 1997, an outbreak of virulent H5N1 avian influenza virus occurred in poultry in Hong Kong (HK) and was linked to a direct transmission to humans. The factors associated with transmission of avian influenza virus to mammals are not fully understood, and the potential risk of other highly virulent avian influenza A viruses infecting and causing disease in mammals is not known. In this study, two avian and one human HK-origin H5N1 virus along with four additional highly pathogenic H5 avian influenza viruses were analyzed for their pathogenicity in 6- to 8-week-old BALB/c mice. Both the avian and human HK H5 influenza virus isolates caused severe disease in mice, characterized by induced hypothermia, clinical signs, rapid weight loss, and 75 to 100% mortality by 6 to 8 days postinfection. Three of the non-HK-origin isolates caused no detectable clinical signs. One isolate, A/tk/England/91 (H5N1), induced measurable disease, and all but one of the animals recovered. Infections resulted in mild to severe lesions in both the upper and lower respiratory tracts. Most consistently, the viruses caused necrosis in respiratory epithelium of the nasal cavity, trachea, bronchi, and bronchioles with accompanying inflammation. The most severe and widespread lesions were observed in the lungs of HK avian influenza virus-infected mice, while no lesions or only mild lesions were evident with A/ck/Scotland/59 (H5N1) and A/ck/Queretaro/95 (H5N2). The A/ck/Italy/97 (H5N2) and the A/tk/England/91 (H5N1) viruses exhibited intermediate pathogenicity, producing mild to moderate respiratory tract lesions. In addition, infection by the different isolates could be further distinguished by the mouse immune response. The non-HK-origin isolates all induced production of increased levels of active transforming growth factor beta following infection, while the HK-origin isolates did not.  相似文献   
9.
The Endo F2gene was overexpressed in E.coli as a fusion protein joined to the maltose-binding protein. MBP-Endo F2was found in a highly enriched state as insoluble, inactive inclusion bodies. Extraction of the inclusion bodies with 20% acetic acid followed by exhaustive dialysis rendered the fusion protein active and soluble. MBP-Endo F2was digested with Factor Xaand purified on Q-Sepharose. The enzyme was homogeneous by SDS-PAGE, and appeared as a single symmetrical peak on HPLC. Analysis of the amino-terminus demonstrated conclusively that recombinant Endo F2was homogeneous and identical to the native enzyme.   相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号