首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   18篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   9篇
  2013年   18篇
  2012年   17篇
  2011年   8篇
  2010年   5篇
  2009年   7篇
  2008年   12篇
  2007年   15篇
  2006年   7篇
  2005年   10篇
  2004年   11篇
  2003年   7篇
  2002年   10篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1979年   2篇
  1975年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
1.
Summary Five hundred mentally retarded children (of both sexes and under 15 years of age) referred to our institute were screened for aminoacid disorders. One case of dicarboxylic aminoaciduria was found in a girl.  相似文献   
2.
ABSTRACT:?

The demand for natural and nonpersistent insecticides is increasing day by day. Plant cell cultures could be an alternative to conventional methods of production of insecticides from field-grown plants. In vitro cultured plant cells produce a wide array of insecticides as a part of their secondary metabolism. Their ability to synthesize key enzymes and the manipulation of these could lead to the enhanced production of many insecticides of industrial importance. The development of a high-yielding hairy root culture system for thiophenes, nicotine, and phytoecdysones is of considerable interest. In this article, the current literature on various factors that influence the growth, production, and secretion of six insecticidal compounds, namely, pyrethrins, azadirachtin, thiophenes, nicotine, rotenoids, and phytoecdysones which have been prospects for the scale-up of cell cultures, genetic engineering to obtain transgenic plants, and metabolically engineered plants for increased production of bio-molecules, has been discussed. Environmental safety clearance and the future prospects of application of bio-molecules for plant-derived insecticides are presented.  相似文献   
3.
Abstract

Molecular mechanics studies are performed on single stranded as well as base paired forms of dinucleoside methylphosphonates comprising different base sequences for both the Sand R-isomers of methylphosphonate (MP). S-MP produces noticeable distortions in the geometry, locally at the phosphate center, and this enables the stereochemical feasibility of compact g? g? phosphodiester. Besides, it tends to perturb the conformations around the P- 03′ and glycosyl bonds, causing minor variations in stacking interactions. In single stranded dinucleosides, the gain in adjacent base stacking interaction energies seems to be sufficient to overcome the barrier to P-03′ bond rotation arising due to S-MP…sugar interaction, and this results in transition to a compact phosphodiester (BI-type) from an initial extended phosphodiester (BII-type) conformation. Such a thing seems rather difficult in base pair constrained duplexes. Dinucleosides with R-MP behave analogous to normal phosphate duplexes as the methyl group is away from the sugar. It is found that dinucleoside methylphosphonates are energetically less favoured than the corresponding dinucleoside phosphates mainly due to the depletion of contributions from electrostatic attractive interactions involving the base and sugar with the methylphosphonate consequent to the nonionic nature of the latter. Neither S-MP nor R-MP seem to significantly alter the stereochemistry of duplex structure.  相似文献   
4.
5.
Pseudomonas aeruginosa is an opportunistic human pathogen capable of forming a biofilm under physiological conditions that contributes to its persistence despite long-term treatment with antibiotics. Here, we report that pathogenic P. aeruginosa strains PAO1 and PA14 are capable of infecting the roots of Arabidopsis and sweet basil (Ocimum basilicum), in vitro and in the soil, and are capable of causing plant mortality 7 d postinoculation. Before plant mortality, PAO1 and PA14 colonize the roots of Arabidopsis and sweet basil and form a biofilm as observed by scanning electron microscopy, phase contrast microscopy, and confocal scanning laser microscopy. Upon P. aeruginosa infection, sweet basil roots secrete rosmarinic acid (RA), a multifunctional caffeic acid ester that exhibits in vitro antibacterial activity against planktonic cells of both P. aeruginosa strains with a minimum inhibitory concentration of 3 microg mL(-1). However, in our studies RA did not attain minimum inhibitory concentration levels in sweet basil's root exudates before P. aeruginosa formed a biofilm that resisted the microbicidal effects of RA and ultimately caused plant mortality. We further demonstrated that P. aeruginosa biofilms were resistant to RA treatment under in vivo and in vitro conditions. In contrast, induction of RA secretion by sweet basil roots and exogenous supplementation of Arabidopsis root exudates with RA before infection conferred resistance to P. aeruginosa. Under the latter conditions, confocal scanning laser microscopy revealed large clusters of dead P. aeruginosa on the root surface of Arabidopsis and sweet basil, and biofilm formation was not observed. Studies with quorum-sensing mutants PAO210 (DeltarhlI), PAO214 (DeltalasI), and PAO216 (DeltalasI DeltarhlI) demonstrated that all of the strains were pathogenic to Arabidopsis, which does not naturally secrete RA as a root exudate. However, PAO214 was the only pathogenic strain toward sweet basil, and PAO214 biofilm appeared comparable with biofilms formed by wild-type strains of P. aeruginosa. Our results collectively suggest that upon root colonization, P. aeruginosa forms a biofilm that confers resistance against root-secreted antibiotics.  相似文献   
6.
How plants communicate using the underground information superhighway   总被引:23,自引:0,他引:23  
The rhizosphere is a densely populated area in which plant roots must compete with invading root systems of neighboring plants for space, water, and mineral nutrients, and with other soil-borne organisms, including bacteria and fungi. Root-root and root-microbe communications are continuous occurrences in this biologically active soil zone. How do roots manage to simultaneously communicate with neighboring plants, and with symbiotic and pathogenic organisms within this crowded rhizosphere? Increasing evidence suggests that root exudates might initiate and manipulate biological and physical interactions between roots and soil organisms, and thus play an active role in root-root and root-microbe communication.  相似文献   
7.
We demonstrate microscale spatial and chemical control of diffusion within protein matrixes created through the use of nonlinear multiphoton excited photochemistry. The mobility of fluorescent dyes of different mass and composition within controlled cross-linked environments has been measured using two-photon excited fluorescence recovery after photobleaching (FRAP). The diffusion times for several rhodamine and sulforhodamine dyes within these fabricated structures were found to be approximately 3-4 orders of magnitude slower than in free solution. The precise diffusion times can be tuned by varying the laser exposure during the fabrication of the matrix, and the diffusion can be correlated with the mesh size determined by TEM and Flory-Rehner analysis. We find that the hydrophobic Texas Red dyes (sulforhodamines) exhibit diffusion that is highly anomalous, indicative of a strong interaction with the hydrophobic cross-linked protein matrix. These results suggests the use of these cross-linked protein matrixes as ideal model systems in which to systematically study anomalous diffusion. Finally, the diffusion can be tuned within a multilayered protein matrix, and this in conjunction with slow diffusion also suggests the use of these structures in controlled release applications.  相似文献   
8.
We demonstrate micron scale control of bioactivity through the use of multiphoton excited photochemistry, where this technique has been used to cross-link three-dimensional matrixes of alkaline phosphatase, bovine serum albumin, and polyacrylamide and combinations therein. Using a fluorescence-based assay (ELF-97), the enzymatic activity has been studied using a Michaelis-Menten analysis, and we have measured the specificity constants kcat/KM for alkaline phosphatase in both the protein and polymer matrixes to be on the order of 10(5)-10(6) M(-1) s(-1)and are comparable to known literature values in other environments. It is found that the enzyme is simply entrapped in the polymer matrix, whereas it is completely covalently bound in the protein structures. The relative reaction rate of alkaline phosphatase bound to BSA with the ELF substrate was measured as a function of cross-link density and was found to decrease in the more tightly formed matrixes, indicating a decrease in the diffusion in the matrix.  相似文献   
9.
Root exudates from Acroptilon repens (Russian knapweed) were found to be phytotoxic and the phytotoxin in the exudate was identified as 7,8-benzoflavone (alpha-naphthoflavone), (1), not previously known as a natural product. In tests on growing seedlings both 1 and its isomer 5,6-benzoflavone (2) were phytotoxic. Flavone, a structural analog of 1 and a known granular leaf and stem exudate of other plant species, was also phytotoxic and more potent than 1 or 2.  相似文献   
10.
The demand for natural and nonpersistent insecticides is increasing day by day. Plant cell cultures could be an alternative to conventional methods of production of insecticides from field-grown plants. In vitro cultured plant cells produce a wide array of insecticides as a part of their secondary metabolism. Their ability to synthesize key enzymes and the manipulation of these could lead to the enhanced production of many insecticides of industrial importance. The development of a high-yielding hairy root culture system for thiophenes, nicotine, and phytoecdysones is of considerable interest. In this article, the current literature on various factors that influence the growth, production, and secretion of six insecticidal compounds, namely, pyrethrins, azadirachtin, thiophenes, nicotine, rotenoids, and phytoecdysones which have been prospects for the scale-up of cell cultures, genetic engineering to obtain transgenic plants, and metabolically engineered plants for increased production of bio-molecules, has been discussed. Environmental safety clearance and the future prospects of application of biomolecules for plant-derived insecticides are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号