首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
2.
3.
The human apical sodium-dependent bile acid transporter (ASBT) is a validated drug target and can be employed to increase oral bioavailability of various drug conjugates. The aim of the present study was to investigate the chemical space around the 24-position of bile acids that influences both inhibition and uptake by the transporter. A series of 27 aminopyridine and aminophenol conjugates of glutamyl-chenodeoxycholate were synthesized and their ASBT inhibition and transport kinetics (parametrized as K(i), K(t), and J(max)) measured using stably transfected ASBT-MDCK cells. All conjugates were potent ASBT inhibitors. Monoanionic conjugates exhibited higher inhibition potency than neutral conjugates. However, neutral conjugates and chloro-substituted monoanionic conjugates were not substrates, or at least not apparent substrates. Kinetic analysis of substrates indicated that similar values for K(i) and K(t) implicate substrate binding to ASBT as the rate-limiting step. Using 3D-QSAR, four inhibition models and one transport efficiency model were developed. Steric fields dominated in CoMFA models, whereas hydrophobic fields dominated CoMSIA models. The inhibition models showed that a hydrophobic or bulky substitute on the 2 or 6 position of a 3-aminopyridine ring enhanced activity, while a hydrophobic group on the 5 position was detrimental. Overall, steric and hydrophobic features around the 24 position of the sterol nucleus strongly influenced bile acid conjugate interaction with ASBT. The relative location of the pyridine nitrogen and substituent groups also modulated binding.  相似文献   
4.
Although osteoporosis and its related fractures are common in patients with COPD, patients at high risk of fracture are poorly identified, and consequently, undertreated. Since there are no fracture prevention guidelines available that focus on COPD patients, we developed a clinical approach to improve the identification and treatment of COPD patients at high risk of fracture. We organised a round-table discussion with 8 clinical experts in the field of COPD and fracture prevention in the Netherlands in December 2013. The clinical experts presented a review of the literature on COPD, osteoporosis and fracture prevention. Based on the Dutch fracture prevention guideline, they developed a 5-step clinical approach for fracture prevention in COPD. Thereby, they took into account both classical risk factors for fracture (low body mass index, older age, personal and family history of fracture, immobility, smoking, alcohol intake, use of glucocorticoids and increased fall risk) and COPD-specific risk factors for fracture (severe airflow obstruction, pulmonary exacerbations and oxygen therapy). Severe COPD (defined as postbronchodilator FEV1 < 50% predicted) was added as COPD-specific risk factor to the list of classical risk factors for fracture. The 5-step clinical approach starts with case finding using clinical risk factors, followed by risk evaluation (dual energy X-ray absorptiometry and imaging of the spine), differential diagnosis, treatment and follow-up. This systematic clinical approach, which is evidence-based and easy-to-use in daily practice by pulmonologists, should contribute to optimise fracture prevention in COPD patients at high risk of fracture.  相似文献   
5.
The apical sodium-dependent bile acid transporter (ASBT, SLC10A2) facilitates the enterohepatic circulation of bile salts and plays a key role in cholesterol metabolism. The membrane topology of ASBT was initially scanned using a consensus topography analysis that predominantly predicts a seven transmembrane (TM) domain configuration adhering to the "positive inside" rule. Membrane topology was further evaluated and confirmed by N-glycosylation-scanning mutagenesis, as reporter sites inserted in the putative extracellular loops 1 and 3 were glycosylated. On the basis of a 7TM topology, we built a three-dimensional model of ASBT using an approach of homology-modeling and remote-threading techniques for the extramembranous domains using bacteriorhodopsin as a scaffold for membrane attachment points; the model was refined using energy minimizations and molecular dynamics simulations. Ramachandran scores and other geometric indicators show that the model is comparable in quality to the crystal structures of similar proteins. Simulated annealing and docking of cholic acid, a natural substrate, onto the protein surface revealed four distinct binding sites. Subsequent site-directed mutagenesis of the predicted binding domain further validated the model. This model agrees further with available data for a pathological mutation (P290S) because the mutant model after in silico mutagenesis loses the ability to bind bile acids.  相似文献   
6.
Khantwal CM  Swaan PW 《Biochemistry》2008,47(12):3606-3614
We report the involvement of transmembrane domain 4 (TM4) of hASBT in forming the putative translocation pathway, using cysteine-scanning mutagenesis in conjunction with solvent-accessibility studies using the membrane-impermeant, sulfhydryl-specific methanethiosulfonate reagents. We individually mutated each of the 21 amino acids in TM4 to cysteine on a fully functional, MTS-resistant C270A-hASBT template. The single-cysteine mutants were expressed in COS-1 cells, and their cell surface expression levels, transport activities [uptake of the prototypical hASBT substrate taurocholic acid (TCA)], and sensitivities to MTS exposure were determined. Only P161 lacked cell-surface expression. Overall, cysteine replacement was tolerated at charged and polar residues, except for mutants I160C, Y162C, I165C, and G179C (相似文献   
7.
The purpose of this study was to design bile acid-containing methanethiosulfonate (MTS) agents with appropriate physical attributes to effectively modify the cysteine residues present in the human apical sodium-dependent bile acid transporter. Four physical properties including surface area, molecular volume, ClogP, and dipole moment were calculated for each semiempirically optimized structure of MTS compounds. The specificity of the synthesized bile acid-MTS conjugate toward native cysteines and putative bile acid interacting domains of hASBT was supported by the effect of 1mM cholyl-MTS, cholylglycyl-MTS, and 3-amino-cholyl-MTS on uptake activity, that displayed a significant decrease in TCA affinity (K(T)=69.9+/-4.5, 69.01+/-6.2, and 63.24+/-0.26 microM and J(max)=35.8+/-0.3, 24.03+/-1.22, 46.49+/-5.01 pmol mg protein min(-1), respectively). These compounds prove to be effective tools in probing the structural and functional effects of cysteine residues in bile acid binding and transporting proteins.  相似文献   
8.

Background

Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials.

Result

Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept.

Conclusion

Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-958) contains supplementary material, which is available to authorized users.  相似文献   
9.
Microfilaments and microtubules (MT) play a vital role in cellular endocytic processes. The present study evaluates the role of these cytoskeletal elements in the apical internalization and postendocytic fate of riboflavin (RF) in placental trophoblasts (BeWo cells). Biochemical modification of the actin and microtubule network by (1) okadaic acid (OA), which disrupts MT-based vesicular trafficking; (2) cytochalasin D and latrunculin B, which promote actin depolymerization; and (3) 2,3-butanedione monoxime (BDM), which inhibits myosin–actin interaction, was confirmed by immunofluorescence microscopy using actin- and tubulin-specific antibodies. Furthermore, involvement of the molecular motors dynein and kinesin was assessed in the presence of (1) sodium orthovanadate, which inhibits dynein-ATPase activity and (2) adenosine 5′-(β,γ-imido)triphosphate tetralithium salt hydrate, a non-hydrolyzable ATP analog, which results in defective kinesin-driven processes. RF internalization consequent to cytoskeletal alterations was compared with that of a clathrin-dependent endocytic marker ([125I]-transferrin [TF]), a caveolae-mediated endocytic substrate ([3H]-folic acid [FA]), and a fluid-phase endocytic marker ([125I]-horse radish peroxidase [HRP]). Apical recycling and bidirectional transport of RF and TF was measured following cytoskeletal alterations. Results indicate that uptake of RF, TF, FA and HRP are markedly reduced (~30–65%) in the presence OA and BDM, suggesting differential sensitivities to modification of kinesin-driven microtubules. However, actin depolymerization negatively affected HRP endocytosis alone, while RF, FA and TF internalization remained unchanged. Disturbances in protein phosphorylation cascades also influenced apical recycling while net ligand transport across monolayers remained unaffected. In conclusion, apical RF trafficking in placental cells is tightly regulated by microtubules and supported by accessory actin involvement.  相似文献   
10.
We report the genomic organization and deduced protein sequence of a cephalochordate member of the Otx homeobox gene family (AmphiOtx) and show its probable single-copy state in the genome. We also present molecular phylogenetic analysis indicating that there was single ancestral Otx gene in the first chordates which was duplicated in the vertebrate lineage after it had split from the lineage leading to the cephalochordates. Duplication of a C-terminal protein domain has occurred specifically in the vertebrate lineage, strengthening the case for a single Otx gene in an ancestral chordate whose gene structure has been retained in an extant cephalochordate. Comparative analysis of protein sequences and published gene expression patterns suggest that the ancestral chordate Otx gene had roles in patterning the anterior mesendoderm and central nervous system. These roles were elaborated following Otx gene duplication in vertebrates, accompanied by regulatory and structural divergence, particularly of Otx1 descendant genes.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号