首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   5篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   8篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2006年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1981年   2篇
  1977年   2篇
排序方式: 共有69条查询结果,搜索用时 250 毫秒
1.
Quinoa is regarded as a highly salt tolerant halophyte crop, of great potential for cultivation on saline areas around the world. Fourteen quinoa genotypes of different geographical origin, differing in salinity tolerance, were grown under greenhouse conditions. Salinity treatment started on 10 day old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups (includers and excluders) depending on their strategy of handling Na+ under saline conditions. Under control (non-saline) conditions, a strong positive correlation was observed between salinity tolerance and plants ability to accumulate Na+ in the shoot. Increased leaf sap K+, controlled Na+ loading to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family.  相似文献   
2.
Human serum amyloid P component (SAP) was expressed in the methylotrophic yeast Pichia pastoris. SAP cDNA was placed under control of regulatory sequences derived from the alcohol oxidase gene (AOX1), and its protein product was secreted using the Saccharomyces cerevisiae alpha-mating factor signal sequence. Recombinant SAP (r-SAP) was produced in a bioreactor with computer controlled fed-batch mode and purified by use of a C-terminal histidine tag. The yield of purified r-SAP was 3-4mg from 1L supernatant and 5-6mg from 1L cell paste, indicating that the majority of the produced SAP was not secreted. Treatment of the cell paste with EDTA increased the yield further by about 30%. The N-terminal of r-SAP purified from the supernatant showed non-complete cleavage of the alpha-mating factor signal sequence. Purified r-SAP, analyzed under native conditions, was shown to be a decamer, like purified human SAP (h-SAP), with monomers of 27kDa. Each monomer had one N-glycosylation site, positioned at the same site as for h-SAP. r-SAP bound to antibodies produced against h-SAP. Furthermore, r-SAP bound to ds DNA and influenza A virus subunits in a Ca(2+)-dependent manner and inhibited influenza A virus hemagglutination. These results indicate that r-SAP produced in P. pastoris has the same biological activity as purified h-SAP.  相似文献   
3.
Autoantibody-associated congenital heart block (CHB) is a passively acquired autoimmune condition associated with maternal anti-Ro/SSA antibodies and primarily affecting electric signal conduction at the atrioventricular node in the fetal heart. CHB occurs in 1–2% of anti-Ro/SSA antibody-positive pregancies and has a recurrence rate of 12–20% in a subsequent pregnancy. Despite the long-recognized association between maternal anti-Ro/SSA autoantibodies and CHB, the molecular mechanisms underlying CHB pathogenesis are not fully understood, but several targets for the maternal autoantibodies in the fetal heart have been suggested. Recent studies also indicate that fetal susceptibility genes determine whether an autoantibody-exposed fetus will develop CHB or not, and begin to identify such genes. In this article, we review the different lines of investigation undertaken to elucidate the molecular pathways involved in CHB development and reflect on the hypotheses put forward to explain CHB pathogenesis as well as on the questions left unanswered and that should guide future studies.  相似文献   
4.
Endothelium-dependent vascular responses induced by leukotriene B4   总被引:1,自引:0,他引:1  
Leukotriene B(4) (LTB(4)) is an inflammatory mediator derived from the 5-lipoxygenase pathway of arachidonic acid metabolism and has recently implicated in the pathogenesis of atherosclerosis. There are two membrane bound receptors for LTB(4): BLT(1) and BLT(2), which represent the high and low affinity receptors, respectively. BLT receptors are expressed on leukocytes, and LTB(4) is a potent chemoattractant for neutrophils, eosinophils, and T lymphocytes. Recent studies have in addition shown that LTB(4) is an indirectly acting vasoconstrictor of isolated vascular preparations. In the guinea pig aorta, the LTB(4)-induced contractions were inhibited by endothelium-denudation. In addition, pre-treatment with the NO synthase inhibitor, L-NOARG, significantly enhanced the contractions induced by LTB(4). The contractile response induced by LTB(4) in the guinea pig aorta was abolished by the selective BLT(1) receptor antagonist U75302 and the expression of BLT(1) receptor mRNA in the guinea pig aorta was established by RT-PCR. Taken together, these results suggest that LTB(4) activates BLT(1) receptors on the endothelium of the guinea pig aorta, associated with the release of both contractile factors and NO.  相似文献   
5.
The DEAD-box helicase DDX3 has suggested functions in innate immunity, mRNA translocation and translation, and it participates in the propagation of assorted viruses. Exploring initially the role of DDX3 in the life cycle of hepatitis C virus, we observed the protein to be involved in translation directed by different viral internal ribosomal entry sites. Extension of these studies revealed a general supportive role of DDX3 in translation initiation. DDX3 was found to interact in an RNA-independent manner with defined components of the translational pre-initiation complex and to specifically associate with newly assembling 80S ribosomes. DDX3 knock down and in vitro reconstitution experiments revealed a significant function of the protein in the formation of 80S translation initiation complexes. Our study implies that DDX3 assists the 60S subunit joining process to assemble functional 80S ribosomes.  相似文献   
6.
7.

Background

Lung epithelial lining fluid (ELF)—sampled through sputum induction—is a medium rich in cells, proteins and lipids. However, despite its key role in maintaining lung function, homeostasis and defences, the composition and biology of ELF, especially in respect of lipids, remain incompletely understood.

Objectives

To characterise the induced sputum lipidome of healthy adult individuals, and to examine associations between different ELF lipid phenotypes and the demographic characteristics within the study cohort.

Methods

Induced sputum samples were obtained from 41 healthy non-smoking adults, and their lipid compositions analysed using a combination of untargeted shotgun and liquid chromatography mass spectrometry methods. Topological data analysis (TDA) was used to group subjects with comparable sputum lipidomes in order to identify distinct ELF phenotypes.

Results

The induced sputum lipidome was diverse, comprising a range of different molecular classes, including at least 75 glycerophospholipids, 13 sphingolipids, 5 sterol lipids and 12 neutral glycerolipids. TDA identified two distinct phenotypes differentiated by a higher total lipid content and specific enrichments of diacyl-glycerophosphocholines, -inositols and -glycerols in one group, with enrichments of sterols, glycolipids and sphingolipids in the other. Subjects presenting the lipid-rich ELF phenotype also had significantly higher BMI, but did not differ in respect of other demographic characteristics such as age or gender.

Conclusions

We provide the first evidence that the ELF lipidome varies significantly between healthy individuals and propose that such differences are related to weight status, highlighting the potential impact of (over)nutrition on lung lipid metabolism.
  相似文献   
8.
Adaptation of quinoa (Chenopodium quinoa Willd.) to new regions demands acclimation to day-length, in addition to a host of other abiotic factors. To further elucidate the effects of photoperiod on development of quinoa, two differently adapted cultivars, Achachino (short day) from Bolivia and Titicaca (day-length neutral), were subjected to continuous long (17.5 h) and short (10 h) photoperiod conditions as well as a shift between the two to trigger possible adaptive mechanisms initiated by changes in leaf soluble sugar and ABA concentration. Our findings show both cultivars responding to an increase in photoperiod with significant increases in soluble sugar concentrations and a simultaneous increase in ABA. However, Titicaca exhibited a much stronger ABA response to increase in photoperiod, whereas the increase for Achachino falls within the range of natural diurnal variation. Achachino also showed increasing sensitivity to long photoperiods throughout all reproductive growth stages, resulting in continued flowering, stem elongation and disruption of seed formation, whereas Titicaca was capable of maintaining full seed set under all the photoperiod conditions. Discernible photoperiod-dependent chlorosis of the lower leaves of Titicaca was observed under long photoperiods compared to short photoperiods, implying multi-faceted adaptive responses to changes in photoperiod which may also involve nitrogen and carbon dynamics. Both ABA and sugar signals are possibly involved in regulating the photoperiod-adaptive capability of each cultivar, leading to pronounced differences in growth and reproductive development patterns between the contrasting cultivars.  相似文献   
9.
Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives   总被引:1,自引:0,他引:1  
Quinoa (Chenopodium quinoa Willd.) originated in the Andean region of South America; this species is associated with exceptional grain nutritional quality and is highly valued for its ability to tolerate abiotic stresses. However, its introduction outside the Andes has yet to take off on a large scale. In the Andes, quinoa has until recently been marginally grown by small-scale Andean farmers, leading to minor interest in the crop from urban consumers and the industry. Quinoa breeding programs were not initiated until the 1960s in the Andes, and elsewhere from the 1970s onwards. New molecular tools available for the existing quinoa breeding programs, which are critically examined in this review, will enable us to tackle the limitations of allotetraploidy and genetic specificities. The recent progress, together with the declaration of “The International Year of the Quinoa” by the Food and Agriculture Organization of the United Nations, anticipates a bright future for this ancient species.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号