首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   33篇
  2023年   2篇
  2022年   15篇
  2021年   22篇
  2020年   16篇
  2019年   15篇
  2018年   29篇
  2017年   16篇
  2016年   24篇
  2015年   22篇
  2014年   35篇
  2013年   38篇
  2012年   75篇
  2011年   41篇
  2010年   31篇
  2009年   25篇
  2008年   42篇
  2007年   34篇
  2006年   25篇
  2005年   19篇
  2004年   17篇
  2003年   18篇
  2002年   9篇
  2001年   12篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1981年   1篇
排序方式: 共有607条查询结果,搜索用时 15 毫秒
1.
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).  相似文献   
2.
The dominant bacteriaPseudomonas sp. andArthrobacter sp. were isolated from the standing water of carbofuran-retreatedAzolla plot.Arthrobacter sp. hydrolysed carbofuran added to the mineral salts medium as a sole source of carbon and nitrogen while no degradation occurred withPseudomonas sp. Interestingly, when the medium containing carbofuran was inoculated with bothArthrobacter sp. andPseudomonas sp., a synergistic increase in its hydrolysis and subsequent release of CO2 from the side chain was noticed. This synergistic interaction was better expressed at 25° C than at 35° C. Likewise, related carbamates, carbaryl, bendiocarb and carbosulfan were more rapidly degraded in the combined presence of both bacterial isolates.  相似文献   
3.
Experiments were conducted to determine optimum stocking density for Clarias batrachus larvae and fry during hatchery rearing. The increase in stocking density decreased the total weight, specific growth rate (SGR) and percent weight gain of Clarias larvae during a 13‐day experiment. Survival rate was highest at a stocking density of 1000 m?2 and lowest at 5000 m?2. Stocking density did not influence the total biomass production of larvae. Clarias batrachus fry performance was studied during a 28‐day hatchery rearing experiment whereby fry stocked at a density of 100 m?2 attained the highest total body weight (P < 0.05). The survival rate greatly declined to 59–61% by a density increase to 300 m?2 and above. Stocking density influenced growth and survival of C. batrachus larvae and fry during hatchery rearing. The best performance was obtained when larvae were stocked at 2000 m?2; survival was highest with C. batrachus fry stocked at 200 m?2.  相似文献   
4.
Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7), a G protein‐coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.  相似文献   
5.
Abstract In this study, the recognition contour of Chemosensor 1 was investigated using semiaqueous methanol (XH, mole fraction = 0.31) for a range of anions and bioactive species. Host–receptor signalling based on the internal charge transfer mechanism for Chemosensor 1 was explored and reported. Structure of Chemosensor 1 and its plausible anion coordination based on hydrogen bonding is complemented with density functional theory. Consequently, we investigated the applicability of the synthesized probe in blood plasma, urine, tap water samples, and for monitoring of ATP in lysosomes by apyrase enzyme.  相似文献   
6.
The International Journal of Life Cycle Assessment - Napier grass, one of the high yield perennial energy crops can be grown on marginal lands with minimal inputs, but with increased soil carbon...  相似文献   
7.
The International Journal of Life Cycle Assessment - Producing biochar from forest residues can help resolve environmental issues by reducing forest fires and mitigating climate change. However,...  相似文献   
8.
The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (−/−) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTPSer178 phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.  相似文献   
9.
Abstract

Graphene based materials have attracted global attention due to their excellent properties. GO-metal oxide nanocomposites have been conjugated with biomolecules for the development of novel materials and potentially used as biomarkers. Herein, a detailed study on the interaction of Bovine serum albumin (BSA) with MnO2@RGO (manganese dioxide-reduced graphene oxide) nanocomposites (NC) has been carried out. MnO2@RGO nanocomposites were prepared through a template/surfactant free hydrothermal route at 180?°C for 12?h by varying the graphene oxide (GO) concentration. Different biophysical experiments have been carried out to evaluate molecular interactions between BSA and NCs. Intrinsic fluorescence has been used to quantify the quenching efficiency of NCs and the binding association of BSA-NC complexes. NCs effectively quenched the intrinsic fluorescence of BSA via static and dynamic mechanism. Further, the results indicate that the molecular interactions of NC with BSA are dependent on the GO percentage in NC. Circular dichroism results demonstrate nominal changes in the secondary structure of BSA in presence of NCs. Also, the esterase-like activity of BSA was marginally affected after adsorption upon NCs. In addition, the FESEM micrographs reveal that the protein-NC complexes consist of nanorod and sheet-like morphologies are forming aggregates of different sizes. We hope that this study will provide a basis for the design of novel graphene based and other related nanomaterials for several biological applications.

Communicated by Ramaswamy H. Sarma  相似文献   
10.
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3′ UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3′ UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through–deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号