首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
  2021年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1980年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
Summary Mineral transport across the plasma membrane of plant cells is controlled by an electrochemical gradient of protons. This gradient is generated by an ATP-consuming enzyme in the membrane known as a proton pump, or H+-ATPase. The protein has a catalytic subunit of Mr=100,000 and is a prominent band when plasma membrane proteins are analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We generated specific rabbit polyclonal antibody against the Mr=100,000 H+-ATPase and used the antibody to screen λgtll expression vector libraries of plant DNA. Several phage clones producing immunoreactive protein, and presumably containing DNA sequences for the ATPase structural gene, were isolated and purified from a carrot cDNA library and a Arabidopsis genomic DNA library. These studies represent our first efforts at cloning the structural gene for a plant plasma membrane transport protein. Applicability of the technique to other transport protein genes and the potential for use of recombinant DNA technology in plant mineral transport research are discussed.  相似文献   
2.
Acceptor proteins for poly(adenosine diphosphoribosyl)ation were determined in resting human lymphocytes, in lymphocytes with N-methyl-N′-nitro-N-nitrosoguanidine-induced DNA damage and in lymphocytes stimulated to proliferate by phytohemagglutinin. Kinetic studies showed that the increase in ADP-ribosylation which occurred in response to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment was greater in magnitude but more transient in duration than that which occurred in phytohemagglutinin-stimulated cells. Gel electrophoretic analyses revealed that MNNG treatment and phytohemagglutinin stimulation both caused an increase in ADP-ribosylation of poly(ADP-ribose) polymerase and core histones. In MNNG-treated cells, an increase in ADP-ribosylation of histone H1 was also observed. In contrast, phytohemagglutinin-stimulated cells showed no increase in ADP-ribosylation of histone H1. In MNNG-treated cells there was also ADP-ribosylation of a protein of molecular weight 62 000, while in phytohemagglutinin-stimulated cells there was a marked increase in ADP-ribosylation of a protein of molecular weight 96000. MNNG treatment of phytohemagglutinin-stimulated cells produced a pattern of ADP-ribosylation that appeared to be due to the combined effects of the individual treatments. 3-Aminobenzamide effectively inhibited ADP-ribosylation under all treatment conditions.  相似文献   
3.
We have analyzed a total of 12 different global and local multiple protein-sequence alignment methods. The purpose of this study is to evaluate each method's ability to correctly identify the ordered series of motifs found among all members of a given protein family. Four phylogenetically distributed sets of sequences from the hemoglobin, kinase, aspartic acid protease, and ribonuclease H protein families were used to test the methods. The performance of all 12 methods was affected by (1) the number of sequences in the test sets, (2) the degree of similarity among the sequences, and (3) the number of indels required to produce a multiple alignment. Global methods generally performed better than local methods in the detection of motif patterns.   相似文献   
4.
The African Black Oystercatcher Haematopus moquini is a charismatic, southern African near-endemic, wader species, that is often seen as a flagship species for coastal bird conservation, as it was recently down-listed regionally to Least Concern on the IUCN Red List of Threatened Species. To celebrate this rare conservation success story, BirdLife South Africa named it the 2018 Bird of the Year and ran a year-long programme in collaboration with the Nature’s Valley Trust highlighting aspects of the species’ biology, current threats, and conservation success. We used data collected by the Southern African Bird Atlas Project (SABAP1 and SABAP2) to examine changes in the species’ range and relative abundance, both in the records between the two projects, as well as trends within the SABAP2 sampling period (2008–2017). This case study enabled us to assess whether such metrics can accurately reflect abundance and distributional changes in a species. We found increases in the reported range and the reporting rates between the two Atlas projects, and that the SABAP2 reporting rate was stable. Regionally, across four coastal categories, the reporting rate was lowest in KwaZulu-Natal, though this region also showed an increase in the probability of reporting during the SABAP2 period. While corroborating the recent change in the species’ conservation status, we also provide good evidence that the long-term SABAP data can be used successfully to assess population trends and range changes over time.  相似文献   
5.
6.
We surveyed nine diallelic polymorphic sites on the Y chromosomes of 1,544 individuals from Africa, Asia, Europe, Oceania, and the New World. Phylogenetic analyses of these nine sites resulted in a tree for 10 distinct Y haplotypes with a coalescence time of approximately 150,000 years. The 10 haplotypes were unevenly distributed among human populations: 5 were restricted to a particular continent, 2 were shared between Africa and Europe, 1 was present only in the Old World, and 2 were found in all geographic regions surveyed. The ancestral haplotype was limited to African populations. Random permutation procedures revealed statistically significant patterns of geographical structuring of this paternal genetic variation. The results of a nested cladistic analysis indicated that these geographical associations arose through a combination of processes, including restricted, recurrent gene flow (isolation by distance) and range expansions. We inferred that one of the oldest events in the nested cladistic analysis was a range expansion out of Africa which resulted in the complete replacement of Y chromosomes throughout the Old World, a finding consistent with many versions of the Out of Africa Replacement Model. A second and more recent range expansion brought Asian Y chromosomes back to Africa without replacing the indigenous African male gene pool. Thus, the previously observed high levels of Y chromosomal genetic diversity in Africa may be due in part to bidirectional population movements. Finally, a comparison of our results with those from nested cladistic analyses of human mtDNA and beta-globin data revealed different patterns of inferences for males and females concerning the relative roles of population history (range expansions) and population structure (recurrent gene flow), thereby adding a new sex-specific component to models of human evolution.   相似文献   
7.
The c-Jun N-terminal kinases (JNKs) have been implicated in the development of insulin resistance, diabetes, and obesity. Genetic disruption of JNK1, but not JNK2, improves insulin sensitivity in diet-induced obese (DIO) mice. We applied RNA interference to investigate the specific role of hepatic JNK1 in contributing to insulin resistance in DIO mice. Adenovirus-mediated delivery of JNK1 short-hairpin RNA (Ad-shJNK1) resulted in almost complete knockdown of hepatic JNK1 protein without affecting JNK1 protein in other tissues. Liver-specific knockdown of JNK1 resulted in significant reductions in circulating insulin and glucose levels, by 57 and 16%, respectively. At the molecular level, JNK1 knockdown mice had sustained and significant increase of hepatic Akt phosphorylation. Furthermore, knockdown of JNK1 enhanced insulin signaling in vitro. Unexpectedly, plasma triglyceride levels were robustly elevated upon hepatic JNK1 knockdown. Concomitantly, expression of proliferator-activated receptor gamma coactivator 1 beta, glucokinase, and microsomal triacylglycerol transfer protein was increased. Further gene expression analysis demonstrated that knockdown of JNK1 up-regulates the hepatic expression of clusters of genes in glycolysis and several genes in triglyceride synthesis pathways. Our results demonstrate that liver-specific knockdown of JNK1 lowers circulating glucose and insulin levels but increases triglyceride levels in DIO mice.  相似文献   
8.
Little is known about the effect of exercise training on the expression of adiponectin receptor genes in peripheral blood mononuclear cells (PBMCs). In this study, we investigated the effects of aerobic training on the expression of AdipoR1 and AidpoR2 mRNAs in PBMCs, whole body insulin sensitivity, and circulating adiponectins in men. Thirty young men were randomly assigned to either a control (n=15) or an exercise (n=15) group. Subjects assigned to the exercise group underwent a 12-week jogging and/or running programme on a motor-driven treadmill at an intensity of 60%-75% of the age-based maximum heart rate with duration of 40 minutes per session and a frequency of 5 days per week. Two-way mixed ANOVA with repeated measures was used to test any significant time-by-group interaction effects for the measured variables at p=0.05. We found significant time-by-group interaction effects for waist circumference (p=0.001), VO2max (p<0.001), fasting insulin (p=0.016), homeostasis model assessment for insulin resistance (HOMA-IR) (p=0.010), area under the curve (AUC) for insulin response during the 75-g oral glucose tolerance test (p=0.002), high-molecular weight (HMW) adiponectin (p=0.016), and the PBMC mRNA levels of AdipoR1 (p<0.001) and AdipoR2 (p=0.001). The exercise group had significantly increased mRNA levels of AdipoR1 and AdipoR2 in PBMCs, along with increased whole body insulin sensitivity and HMW adiponectin, decreased waist circumference, and increased VO2max compared with the control group. In summary, the current findings suggest that exercise training modulates the expression of AdipoR1 and AdipoR2 mRNAs in PBMCs, implying that manipulation of the expression of these genes could be a potential surrogate for lifestyle intervention-mediated improvements of whole body insulin sensitivity and glucose homeostasis.  相似文献   
9.
A series of structurally novel stearoyl-CoA desaturase1 (SCD1) inhibitors has been identified via molecular scaffold manipulation. Preliminary structure–activity relationship (SAR) studies led to the discovery of potent, and orally bioavailable piperidine-aryl urea-based SCD1 inhibitors. 4-(2-Chlorophenoxy)-N-[3-(methyl carbamoyl)phenyl]piperidine-1-carboxamide 4c exhibited robust in vivo activity with dose-dependent desaturation index lowering effects.  相似文献   
10.
Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel expressed predominantly in peripheral nociceptors. By detecting and integrating diverse noxious thermal and chemical stimuli, and as a result of its sensitization by inflammatory mediators, the TRPV1 receptor plays a key role in inflammation-induced pain. Activation of TRPV1 leads to a cascade of pro-nociceptive mechanisms, many of which still remain to be identified. Here, we report a novel effect of TRPV1 on the activity of the potassium channel KCNQ2/3, a negative regulator of neuronal excitability. Using ion influx assays, we revealed that TRPV1 activation can abolish KCNQ2/3 activity, but not vice versa, in human embryonic kidney (HEK)293 cells. Electrophysiological studies showed that coexpression of TRPV1 caused a 7.5-mV depolarizing shift in the voltage dependence of KCNQ2/3 activation compared with control expressing KCNQ2/3 alone. Furthermore, activation of TRPV1 by capsaicin led to a 54% reduction of KCNQ2/3-mediated current amplitude and attenuation of KCNQ2/3 activation. The inhibitory effect of TRPV1 appears to depend on Ca(2+) influx through the activated channel followed by Ca(2+)-sensitive depletion of phosphatidylinositol 4,5-bisphosphate and activation of protein phosphatase calcineurin. We also identified physical interactions between TRPV1 and KCNQ2/3 coexpressed in HEK293 cells and in rat dorsal root ganglia neurons. Mutation studies established that this interaction is mediated predominantly by the membrane-spanning regions of the respective proteins and correlates with the shift of KCNQ2/3 activation. Collectively, these data reveal that TRPV1 activation may deprive neurons from inhibitory control mediated by KCNQ2/3. Such neurons may thus have a lower threshold for activation, which may indirectly facilitate TRPV1 in integrating multiple noxious signals and/or in the establishment or maintenance of chronic pain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号