首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   5篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   2篇
  2015年   10篇
  2014年   8篇
  2013年   5篇
  2012年   10篇
  2011年   10篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   11篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1991年   1篇
  1979年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
OBJECTIVES--To observe changes in prescribing practice that occurred after the introduction of fundholding in first wave practices and to contrast these with changes occurring in similar non-fundholding practices. DESIGN--Prospective observational study. SETTING--Oxford region fundholding study. SUBJECTS--Eight first wave fundholding practices and five practices that were not interested in fundholding in 1990-1, which were similar in terms of practice size, training status, locality, and urban rural mix. Three of the fundholding and none of the non-fundholding practices were dispensing practices. MAIN OUTCOME MEASURES--Changes in prescribing practice as measured by net cost per prescribing unit, cost per item, number of items prescribed, and substitution rates for generic drugs three years after the introduction of fundholding. Data for fundholding practices were analysed separately according to whether they were dispensing or non-dispensing practices. RESULTS--Prescribing costs rose by a third or more in all types of practice. The patterns of change observed in this cohort after one year of fundholding were reversed. No evidence existed that fundholding had controlled prescribing costs among non-dispensing fundholders; costs among dispensing fundholders rose least, but the differences were small compared with the overall increase in costs. CONCLUSIONS--Early reports of the effectiveness of fundholding in curbing prescribing costs have not been confirmed in this longer term study.  相似文献   
2.
Chikungunya fever is one of the reemerging vector-borne diseases. It has become a major global health problem especially in the developing countries. There are no vaccines or specific antiviral drugs available to date. This study reports small molecule inhibitors of envelope glycoprotein 2 (E2 glycoprotein) which are predicted based on Chikungunya virus–host interactions. E2 glycoprotein of Chikungunya virus interacts at 216 residue of the host receptor protein which plays a vital role in initiating infection. Understanding the structural aspects of E2 glycoprotein is crucial to develop specific inhibitors to prevent the virus binding from host receptors. In silico method was adopted to predict the sequence motifs of envelope protein, as the method like yeast two hybrid system is laborious, time consuming, and costly. The E2 glycoprotein structure of the Indian isolate was modeled using two templates (2XFC and 3JOC) and then validated. The class III PDZ domain binding motif was found to be identified at 213–216 amino acids. The corresponding peptide structures which recognize the PDZ domain binding motif were identified by the literature search and were used for generating five point pharmacophore model (ADDDR) containing acceptor, donor and aromatic ring features. Databases such as Asinex, TosLab and Maybridge were searched for the matches for the predicted pharmacophore model. Two compounds were identified as lead molecules as their glide score is?>?5?kcal/mol. Since the pharmacophore model is developed based on Chikungunya virus–host interaction, it can be used for designing promising antiviral lead compounds for the treatment of Chikungunya fever.An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:21  相似文献   
3.
4.
The COVID‐19 pandemic caused by SARS‐CoV‐2 infection has led to socio‐economic shutdowns and the loss of over 5 million lives worldwide. There is a need for the identification of therapeutic targets to treat COVID‐19. SARS‐CoV‐2 spike is a target of interest for the development of therapeutic targets. We developed a robust SARS‐CoV‐2 S spike expression and purification protocol from insect cells and studied four recombinant SARS‐CoV‐2 spike protein constructs based on the original SARS‐CoV‐2 sequence using a baculovirus expression system: a spike protein receptor‐binding domain that includes the SD1 domain (RBD) coupled to a fluorescent tag (S‐RBD‐eGFP), spike ectodomain coupled to a fluorescent tag (S‐Ecto‐eGFP), spike ectodomain with six proline mutations and a foldon domain (S‐Ecto‐HexaPro(+F)), and spike ectodomain with six proline mutations without the foldon domain (S‐Ecto‐HexaPro(‐F)). We tested the yield of purified protein expressed from the insect cell lines Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tni) and compared it to previous research using mammalian cell lines to determine changes in protein yield. We demonstrated quick and inexpensive production of functional glycosylated spike protein of high purity capable of recognizing and binding to the angiotensin converting enzyme 2 (ACE2) receptor. To further confirm functionality, we demonstrate binding of eGFP fused construct of the spike ectodomain (S‐Ecto‐eGFP) to surface ACE2 receptors on lung epithelial cells by flow cytometry analysis and show that it can be decreased by means of receptor manipulation (blockade or downregulation).  相似文献   
5.
Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly expressed in diverse human carcinomas and certain hematologic malignancies. The oncogenic MUC1 transmembrane C-terminal subunit (MUC1-C) functions in part by transducing growth and survival signals from cell surface receptors. However, little is known about the structure of the MUC1-C cytoplasmic domain as a potential drug target. Using methods for structural predictions, our results indicate that a highly conserved CQCRRK sequence, which is adjacent to the cell membrane, forms a small pocket that exposes the two cysteine residues for forming disulfide bonds. By contrast, the remainder of the MUC1-C cytoplasmic domain has no apparent structure, consistent with an intrinsically disordered protein. Our studies thus focused on targeting the MUC1 CQCRRK region. The results show that L- and D-amino acid CQCRRK-containing peptides bind directly to the CQC motif. We further show that the D-amino acid peptide, designated GO-203, blocks homodimerization of the MUC1-C cytoplasmic domain in vitro and in transfected cells. Moreover, GO-203 binds directly to endogenous MUC1-C in breast and lung cancer cells. Colocalization studies further demonstrate that GO-203 predominantly binds to MUC1-C at the cell membrane. These findings support the further development of agents that target the MUC1-C cytoplasmic domain CQC motif and thereby MUC1-C function in cancer cells.  相似文献   
6.
7.
The COVID‐19 pandemic caused by SARS‐CoV‐2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of a SARS‐CoV‐2 spike protein receptor binding domain (RBD) that includes the SD1 domain. Bacterial cytoplasm is a reductive environment, which is problematic when the recombinant protein of interest requires complicated folding and/or processing. The use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) bypasses this issue by pre‐expressing a sulfhydryl oxidase and a disulfide isomerase, allowing the recombinant protein to be correctly folded with disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce an active RBD in bacteria that is capable of recognizing and binding to the ACE2 (angiotensin‐converting enzyme) receptor as well as antibodies in COVID‐19 patient sera.  相似文献   
8.
The novel oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic acid (CDDO) and the C-28 methyl ester (CDDO-Me) induce apoptosis of human tumor cells by disruption of redox balance and are currently in clinical trials. The present studies show that CDDO and CDDO-Me block tumor necrosis factoralpha-induced targeting of NF-kappaB p65 to the nucleus. CDDO-Me also blocked tumor necrosis factor alpha-induced phosphorylation of IkappaBalpha. In concert with these results, we found that CDDO-Me inhibits IkappaBalpha kinasebeta (IKKbeta) activity in cells. In support of a direct mechanism, CDDO-Me inhibited recombinant IKKbeta activity in vitro. The results also demonstrate that (i) CDDO and CDDO-Me form adducts with IKKbeta, but not IKKbeta with mutation of Cys-179 to Ala, and (ii) CDDO-Me inhibits IKKbeta by a mechanism dependent on oxidation of Cys-179. These findings indicate that CDDO and CDDO-Me directly block IKKbeta activity and thereby the NF-kappaB pathway by interacting with Cys-179 in the IKKbeta activation loop.  相似文献   
9.
Daily oral administration of isoproterenol hydrochloride (60 mg/kg body weight; for 30 days) a beta-receptor agonist to normal innervated and denervated adult male Swiss albino mice confirmed its ability to induce skeletal muscle hypertrophy and reverse denervation atrophy respectively. Measurement of total tissue proteins and dry muscle mass showed 15-17% increase with 6% rise of hypertrophy index in gastrocnemius muscle. Hydroxyproline assay employed to measure the total tissue collagen exhibited 45% increase in collagen in normal innervated gastrocnemius muscle in response to beta agonist treatment. beta-adrenoceptor agonist ameliorated denervation atrophy along with further increase in collagen content of denervated gastrocnemius muscle.  相似文献   
10.
The H1N1 2009 influenza virus (H1N1pdm09) pandemic had several unexpected features, including low morbidity and mortality in older populations. We performed in-depth evaluation of antibody responses generated following H1N1pdm09 infection of naïve ferrets and of 130 humans ranging from the very young (0 to 9 years old) to the very old (70 to 89 years old). In addition to hemagglutination inhibition (HI) titers, we used H1N1pdm09 whole-genome-fragment phage display libraries (GFPDL) to evaluate the antibody repertoires against internal genes, hemagglutinin (HA), and neuraminidase (NA) and also measured antibody affinity for antigenic domains within HA. GFPDL analyses of H1N1pdm09-infected ferrets demonstrated gradual development of antibody repertoires with a focus on M1 and HA1 by day 21 postinfection. In humans, H1N1pdm09 infection in the elderly (>70 years old) induced antibodies with broader epitope recognition in both the internal genes and the HA1 receptor binding domain (RBD) than for the younger age groups (0 to 69 years). Importantly, post-H1N1 infection serum antibodies from the elderly demonstrated substantially higher avidity for recombinant HA1 (rHA1) (but not HA2) than those from younger subjects (50% versus <22% 7 M urea resistance, respectively) and lower antibody dissociation rates using surface plasmon resonance. This is the first study in humans that provides evidence for a qualitatively superior antibody response in the elderly following H1N1pdm09 infection, indicative of recall of long-term memory B cells or long-lived plasma cells. These findings may help explain the age-related morbidity and mortality pattern observed during the H1N1pdm09 pandemic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号