首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2011年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
2.
This article describes the removal of heavy metals from contaminated clayey soils by soil washing using various extractants. Two clayey soils, kaolin, a low buffering soil with pH of 5, and glacial till, a high buffering soil with pH of 8, were used to represent various soil conditions. These soils were spiked with chromium (Cr), nickel (Ni), and cadmium (Cd) to simulate improper disposal of typical electroplating waste constituents. The following extracting solutions were investigated for the removal of heavy metals from the soils: deionized water, distilled water, and tap water; acetic acid and phosphoric acid; chelating agents ethylenediaminetetraacetic acid (EDTA) and citric acid; and the oxidizing agents potassium permanganate and hydrogen peroxide. The effect of extractant concentration on removal of heavy metals was also investigated. Complete removal of Cr was achieved using 0.1?M potassium permanganate for kaolin, while a maximum of 54% was removed from glacial till. A maximum Ni removal of 80% was achieved using tapwater for kaolin, while a maximum removal of 48 to 52% was achieved using either 1?M acetic acid or 0.1?M citric acid for glacial till. A maximum Cd removal of 50% was achieved using any of the extractants for kaolin, while a maximum removal of 45 to 48% was obtained using either acids or chelating agents for glacial till. Overall, this study showed that complete removal of Cr, Ni, and Cd from clayey soils is difficult to achieve using the soil-washing process, and also the use of one extractant may not be effective in removing all metals. A sequential extraction using different extractants may be needed for the removal of multiple metal contaminants from clayey soils.  相似文献   
3.
4.
During the establishment of Escherichia coli O157:H7 infection, its capacity to adhere to host intestinal epithelial cells is the critical first step in pathogenesis. It also has the capability to form biofilms, and because both are surface activities, we sought to gain insight into a potential linkage between biofilm formation and adherence to epithelial cells. We conducted an adherence assay with 51 biofilm-negative mutants and two human epithelial cell lines, T84 and HEp2. Our results show that unlike wild-type cells, biofilm-negative mutants adhere poorly to epithelial cells. Some adhesin-negative mutants were fully competent in biofilm formation, however. Thus, biofilm-forming activity in E. coli O157:H7 EDL933 is required for adherence to T84 and HEp2 cells, but it is not sufficient.  相似文献   
5.
Alstonia scholaris is one of the most important medicinal plants and herein, we present the synthesis of zinc oxide nanoparticles using the bark extract of Alstonia scholaris, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 mL of 1 mM zinc nitrate aqueous solution with 10 mL of 10% bark extract. The formation of Alstonia scholaris bark extract mediated zinc oxide nanoparticles was confirmed by UV–visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR) at 430 nm. Fourier transform infrared spectroscopic (FT-IR) analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract is responsible for the reduction and stabilization of the ZnONPs. The crystalline phase of the nanocrystals was determined by XRD analysis and morphology was studied using transmission electron microscopy (TEM). The hydrodynamic diameter (26.2 nm) and a positive zeta potential (43.0 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of Alstonia scholaris ZnONPs was evaluated (in-vitro) using disc diffusion method against fungi, Gram-negative and Gram-positive bacteria which were isolated from the biofilm formed in drinking water PVC pipelines. The results obtained suggested that ZnO nanoparticles exhibit a good anti-fungal activity than bactericidal effect towards all pathogens tested in in-vitro disc diffusion method (170 ppm, 100 ppm and 50 ppm). Further, the toxicity of biosynthesized ZnONPs was tested against Alstonia scholaris to evaluate the cytotoxic effect that displayed LC50 value of 95% confidence intervals.  相似文献   
6.
This article presents the results of an investigation that assessed the extent and effect of oxidation of Cr(III) in manganese-enriched clays on the electrokinetic remedial efficiency. Because chromium commonly exists along with nickel and cadmium at contaminated sites, the effects of changes in chromium redox chemistry on the migration of the coexisting nickel and cadmium was also studied. Bench-scale electrokinetic experiments were conducted using two different clays: kaolin, a typical low buffering soil, and glacial till, a high buffering soil. Tests were performed with 1000?mg/kg of Cr(III), 500?mg/kg of Ni(II), and 250?mg/kg of Cd(II), both with and without the presence of 1000?mg/kg of manganese. All of these experiments were conducted under a constant voltage gradient of 1.0?VDC/ cm. The experimental results showed that in the presence of manganese, percentages of oxidation of Cr(III) into Cr(VI) ranged from 67% in kaolin to 28% in glacial till even before the application of induced electric potential. The low extent of oxidation of Cr(III) in glacial till may be attributed to the initial precipitation of Cr(III) as Cr(OH)3 resulting from high soil pH, reducing aqueous Cr(III) concentrations present within the soil. In kaolin, Cr(III), Ni(II), and Cd(II) under electric potential migrated toward cathode and precipitated near the cathode due to high soil pH. When manganese was present in kaolin, Cr(VI) that was formed due to the oxidation of Cr(III) migrated toward anode and adsorbed to the soil surfaces near the anode region due to low soil pH. However, remaining Cr(III) as well as Ni(II), and Cd(II) migrated towards and precipitated near the cathode due to high soil pH. In kaolin, the migration of Ni(II) and Cd(II) was retarded in the presence of manganese due to a larger soil zone of elevated pH near the cathode. In glacial till, the migration of Cr(III), Ni(II) and Cd(II) was insignificant due to precipitation resulting from high soil pH caused by the high buffering capacity of the soil. Cr(VI) that resulted from the partial oxidation of Cr(III) in the presence of manganese, however, migrated toward the anode. Overall, this study demonstrated that the effects of manganese on Cr(III) oxidation in low buffering soils can be significant, which can in turn affect the extent and direction of chromium migration under induced electric potential.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号