首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   10篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1969年   3篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
The hexagonally patterned surface layer of halobacteria consists of a true glycoprotein. This procaryotic glycoprotein has recently been shown to exhibit novel features with respect to saccharide structure and saccharide biosynthesis. The primary structure and the location of glycosylation sites were determined by cloning and sequencing of the glycoprotein gene of Halobacterium halobium. According to the predicted amino acid sequence, the glycoprotein is synthesized with a N-terminal leader sequence of 34 amino acid residues reminiscent of eucaryotic and procaryotic signal peptides. A hydrophobic stretch of 21 amino acid residues at the C terminus probably serves as a transmembrane domain. 14 threonine residues are clustered adjacent to this membrane anchor and linked to these threonines are all the disaccharides of the cell surface glycoprotein. 12 N-glycosylation sites are distributed over the polypeptide chain.  相似文献   
2.
Knott JM  Römer P  Sumper M 《FEBS letters》2007,581(16):3081-3086
Polyamines are involved in many fundamental cellular processes. Common polyamines are putrescine, spermidine and spermine. Spermine is synthesized by transfer of an aminopropyl residue derived from decarboxylated S-adenosylmethionine to spermidine. Thermospermine is an isomer of spermine and assumed to be synthesized by an analogous mechanism. However, none of the recently described spermine synthases was investigated for their possible activity as thermospermine synthases. In this work, putative spermine synthases from the diatom Thalassiosira pseudonana and from Arabidopsis thaliana could be identified as thermospermine synthases. These findings may explain the previous result that two putative spermine synthase genes in Arabidopsis produce completely different phenotypes in knock-out experiments. Likely, part of putative spermine synthases identifiable by sequence comparisons represents in fact thermospermine synthases.  相似文献   
3.
Ender F  Godl K  Wenzl S  Sumper M 《The Plant cell》2002,14(5):1147-1160
The alga Volvox carteri is one of the simplest multicellular organisms, yet it has a surprisingly complex extracellular matrix (ECM), making Volvox suitable as a model system in which to study ECM self-assembly. Here, we analyze the primary structures and post-translational modifications of two main ECM components synthesized in response to sexual induction as well as wounding. These proteins are members of the pherophorin family with as yet unknown properties. They contain polyhydroxyproline spacers as long as 500 and 2750 residues. Even the highly purified proteins retain the capacity to self-assemble and cross-link, producing an insoluble fibrous network in an apparently autocatalytic reaction. This pherophorin-based network is located within the deep zone of the ECM. A molecular genetic search for additional members of the pherophorin family indicates that at least nine different pherophorin species can be expected to serve as precursors for ECM substructures. Therefore, the highly diversified members of the pherophorin family represent region-specific morphological building blocks for ECM assembly and cross-linking.  相似文献   
4.
Uptake and metabolism of silicon by diatoms are studied by the combined use of solid-state 29Si NMR spectroscopy and confocal laser fluorescence microscopy especially with respect to the presence and nature of an intracellular silicon-storage pool. Cells of the marine diatom Thalassiosira pseudonana were synchronized by silicon starvation and frozen without any freeze-drying or chemical treatment in order to analyze integer and unmodified diatoms. The frozen samples were investigated by solid-state 29Si NMR spectroscopy to identify potential silica precursors. The developmental state of the cell culture and the formation of new siliceous girdle bands and valves were monitored by laser fluorescence microscopic studies. A comparison of fluorescence microscopic and NMR data allows the assignment of NMR spectra to the various developmental stages of the dividing diatom cells. A detailed analysis of solid-state 29Si NMR spectra suggests that the silicon-storage pool-if present-consists of four-coordinated, condensed silicon; possibly a silica sol.  相似文献   
5.
Sumper  M. 《Journal of phycology》2000,36(S3):64-65
Diatoms are well known for the intricate patterns of their silica-based cell walls. The complex structures of diatom cell walls are species specific and become precisely reproduced during each cell division cycle, indicating a genetic control of silica biomineralization. Therefore, the formation of the diatom cell wall has been regarded as a paradigm for controlled production of nanostructured silica. However, the mechanisms allowing biosilicification to proceed at ambient temperature at high rates have remained enigmatic. Recently, we have shown that a set of highly cationic peptides (called silaffins) isolated from Cylindrotheca fusiformis shells are able to generate networks of silica nanospheres within seconds when added to a solution of silicic acid. Different silaffin species produce different morphologies of the precipitated silica. Silaffins contain covalently modified Lys-Lys elements. One of these lysine residues bears a novel type of protein modification, a polyamine consisting of 6–11 repeats of the N-methyl-propylamine unit. In addition to the silaffins, additional polyamine-containing substances have been isolated from a number of diatom species that may be involved in the control of biosilica morphology. Scanning electron microscopic analysis of diatom shells isolated in statu nascendi provide insights into the processes of pattern formation in biosilica. A model will be discussed that explains production of nanostructured biosilica in diatoms on the basis of these experimental results.  相似文献   
6.
Halobacterial flagellins are sulfated glycoproteins   总被引:21,自引:0,他引:21  
The cell-surface glycoprotein of Halobacteria contains oligosaccharides of the type Glc4----1GlcA4----1GlcA4----1GlcA (where GlcA indicates glucuronic acid) with a sulfate group attached to each of the GlcA residues. We report here that in addition to this cell-surface glycoprotein, the halobacterial flagellar proteins (recently described by Alam, M., and Oesterhelt, D. (1984) J. Mol. Biol. 176, 459-475) also contain the same type of sulfated oligosaccharides. These flagellins have the following features. All of the individual flagellar proteins contain identical sulfated saccharide moieties linked to the amido nitrogen of Asn through a Glc residue (the novel type of N-glycosidic linkage that has been found in the cell-surface glycoprotein from Halobacteria (Wieland, F., Heitzer, R., and Schaefer, W. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5470-5474)). The amino acid sequence of one carbohydrate-binding region is Gln-Ala-Ala-Gly-Ala-Asp-Asn-Jle-Asn-Leu-Thr-Lys. This surrounding sequence CHO is consistent with the general formula Asn-X-Thr(Ser), common to all N-linked glycopeptides determined so far. Biosynthesis of flagellar glycoconjugates involved sulfated oligosaccharides linked to dolichol monophosphate. The individual glycoproteins making up the flagella are structurally closely related to one another.  相似文献   
7.
8.
We report the chemical characterization of the highly sulphated glycoprotein SSG 185 from Volvox carteri. SSG 185 is a hydroxyproline-containing, extracellular glycoprotein. The sulphate residues are clustered within the parent saccharide structure of SSG 185, since on mercaptolysis all the sulphate residues are recovered in a small saccharide fragment containing mannose, arabinose and sulphate (in a molar ratio of 2). SSG 185 is a short-lived molecule, serving as a precursor for a high mol. wt. component of the extracellular matrix. Synthesis of SSG 185 is developmentally controlled. Different SSG 185 variants, with unknown modifications in the sulphated saccharide fragment, are synthesized at different developmental stages or under the influence of the sexual inducer. These modifications remain conserved in the aggregated state of SSG 185, indicating the development-dependent modification of the extracellular matrix.  相似文献   
9.
The outer surface of the moderate halophilic archaebacterium Haloferax volcanii (formerly named Halobacterium volcanii) is covered with a hexagonally packed surface (S) layer glycoprotein. The polypeptide (794 amino acid residues) contains 7 N-glycosylation sites. Four of these sites were isolated as glycopeptides and the structure of one of the corresponding saccharides was determined. Oligosaccharides consisting of beta-1,4-linked glucose residues are attached to the protein via the linkage unit asparaginyl-glucose. In the related glycoprotein from the extreme halophile Halobacterium halobium, the glucose residues are replaced by sulfated glucuronic acid residues, causing a drastic increase in surface charge density. This is discussed in terms of a recent model explaining the stability of halophilic proteins.  相似文献   
10.
Zeitler  R; Hochmuth  E; Deutzmann  R; Sumper  M 《Glycobiology》1998,8(12):1157-1164
The archaeon Halobacterium halobium expresses a cell surface glycoprotein (CSG) with a repeating pentasaccharide unit N- glycosidically linked via N-acetylgalactosamine to Asn-2 of the polypeptide (GalNAc(1-N)Asn linkage type). This aspar-agine of the linkage unit is located within the N-terminal sequence Ala-Asn-Ala-Ser- , in accordance with the tripeptide consensus sequence Asn-Xaa-Ser/Thr typical for nearly every N-glycosylation site known so far, which are of the GlcNAc(1-N)-Asn linkage type. By a gene replacement method csg mutants were created which replace the serine residue of the consensus sequence by valine, leucine, and asparagine. Unexpectedly, this elimination of the consensus sequence did not prevent N-glycosylation. All respective mutant cell surface glycoproteins were N-glycosylated at Asn-2 with the same N-glycan chain as the wild type CSG. Asn-479 is N- glyco-sylated via a Glc(1-N)Asn linkage type in the wild type CSG. Replacement of Ser-481 in the sequence Asn-Ser-Ser for valine prevented glycosylation of Asn-479. From these results we postulate the existence of two different N-glycosyltransferases in H.halobium, one of which does not use the typical consensus sequence Asn-Xaa-Ser/Thr necessary for all other N-glycosyltransferases described so far.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号