首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1265篇
  免费   115篇
  2022年   14篇
  2021年   37篇
  2020年   18篇
  2019年   24篇
  2018年   29篇
  2017年   28篇
  2016年   35篇
  2015年   42篇
  2014年   45篇
  2013年   77篇
  2012年   73篇
  2011年   88篇
  2010年   40篇
  2009年   38篇
  2008年   49篇
  2007年   77篇
  2006年   46篇
  2005年   41篇
  2004年   51篇
  2003年   33篇
  2002年   30篇
  2001年   35篇
  2000年   30篇
  1999年   25篇
  1998年   12篇
  1997年   11篇
  1995年   10篇
  1994年   12篇
  1993年   7篇
  1992年   26篇
  1991年   28篇
  1990年   24篇
  1989年   26篇
  1988年   14篇
  1987年   12篇
  1986年   12篇
  1985年   16篇
  1984年   8篇
  1983年   7篇
  1981年   7篇
  1980年   6篇
  1979年   16篇
  1978年   16篇
  1977年   6篇
  1976年   6篇
  1973年   7篇
  1972年   10篇
  1971年   9篇
  1966年   7篇
  1964年   5篇
排序方式: 共有1380条查询结果,搜索用时 15 毫秒
1.
Haploid plants were regenerated in vitro from unpollinated ovules of niger (Guizotia abyssinica (L. f.) (Cass.) on Murashige and Skoog nutrient medium (MS) supplemented with 10 μM naphthaleneacetic acid or 10 μM NAA + 1.5 μM kinetin and 30 g/l sucrose. Gamborg (B5) medium was the best for plant regeneration (in comparison with MS, Nitsch and Nitsch (NN), and Chu (N6) media) from cultured ovules, and 6.66 and 7.33 ovules of JNC-6 and Ootacamund cultivars were involved in direct plant regeneration on this medium. Matured ovules (ovules collected one day before anthesis or on the day of anthesis) only responded to cultural regimes and involved in direct plantlet development. Cytological preparation of root tips and chloroplast counts in the guard cells of leaf stomata of regenerated plants confirmed their haploid nature. This text was submitted by the authors in English.  相似文献   
2.
Role of Thidiazuron (TDZ) in inducing adventitious organogenesis in Pongamia was studied. TDZ at different concentrations (0, 0.45, 2.27, 4.54, 6.71, 9.08, 11.35, 13.12 and 22.71 μM) were used for induction of caulogenic bud formation in deembryonated cotyledon explants. Each cotyledon was cut into three segments and identified as proximal, middle and distal. Duration of TDZ exposure, influence of the segment and orientation of the explant were studied. TDZ at 11.35 μM concentration was optimum for the induction of shoots and rapid elongation. Shoots induced at higher concentration elongated after several passages in growth regulator free medium, thereby extending the period of differentiation. Exposure of the explant for 20 days yielded more number of buds than 10 days. Proximal segment of the cotyledon was more responsive. Contact of abaxial surface in the medium was more effective and generated more buds than the adaxial side. Buds differentiated and elongated on transfer to MS basal medium for 8–12 passages of 15 days each. Rooting and elongation of shoots was achieved in charcoal supplemented half-strength MS medium. Rooted plantlets survived on transfer to sand soil mixture. The plants were hardened and transferred to green house. This is the first report on in vitro regeneration of Pongamia pinnata via adventitious organogenesis using TDZ. This protocol may find application in studies in genetic transformation, isolation of somaclonal variants and in induction of mutants. It also provides a system to study the inhibitory role of TDZ on shoot differentiation.  相似文献   
3.
4.
5.
Summary The rhizosphere microflora of arecanut palm under continuous application of organic manures and inorganic fertilizers was studied. The nutrients applied are 100 g N, 40 g P2O5 and 140 g K2O/palm/year in the form of organics and inorganics. The application of organic manure increased the microbial population. The increase in microbial population was observed between the rhizosphere samples collected at 0–30cm and 30–60 cm depths. The surface cultivation of soil increased the microbial population.Trichoderma sp. andAspergillus sp. dominated in therhizosphere of arecanut palm. Contribution No. 208. Central Plantation Crops Research Institute, Vittal-574243, Karnataka, India.  相似文献   
6.
7.
The activity of components of the extracellular cellulase system of the thermophilic fungus Sporotrichum thermophile showed appreciable differences between strains; β-glucosidase (EC 3.2.1.21) was the most variable component. Although its endoglucanase (EC 3.2.1.4) and exoglucanase (EC 3.2.1.91) activities were markedly lower, S. thermophile degraded cellulose faster than Trichoderma reesei. The production of β-glucosidase lagged behind that of endoglucanase and exoglucanase. The latter activities were produced during active growth. When growth was inhibited by cycloheximide treatment, the hydrolysis of cellulose was lower than in the control in spite of the presence of both endoglucanase and exoglucanase activities in the culture medium. Degradation of cellulose was a growth-associated process, with cellulase preparations hydrolyzing cellulose only to a limited extent. The growth rate and cell density of S. thermophile were similar in media containing cellulose or glucose. A distinctive feature of fungal development in media incorporating cellulose or lactose (inducers of cellulase activity) was the rapid differentiation of reproductive units and autolysis of hyphal cells to liberate propagules which were capable of renewing growth immediately.  相似文献   
8.
As reported previously squamous cell differentiation of rabbit tracheal epithelial (RTE) cells in culture is a multi-step process. This program of differentiation is inhibited by retinoic acid and retinol; retinoic acid is about 100 times more effective than retinol. To examine the metabolism of these agents in this in vitro model system, RTE cells were grown in the presence of all-trans-[3H]retinol or all-trans-[3H]retinoic acid and their metabolites analyzed by high-pressure liquid chromatography. RTE cells converted most of the retinol to retinyl esters, predominantly retinyl palmitate. A small fraction was metabolized to polar compounds, one of which coeluted with retinoic acid. After methylation this compound eluted as 13-cis-methyl retinoate and as all-trans-methyl retinoate. Conversion to 13-cis-retinol was also observed. All-trans-retinoic acid was rapidly taken up by RTE cells and converted to more polar (peak 1) and less polar (peak 3) metabolites. A proportion of all-trans-[3H]retinoic acid was metabolized to 13-cis-[3H]retinoic acid. These metabolic reactions appeared to be constitutive and were not induced by pretreatment with retinoic acid. The peak 1 metabolites were rapidly secreted into the medium whereas the peak 3 metabolites were retained by the cells and were not detected in the medium. Alkaline hydrolysis of the metabolites in peak 3 yielded retinoic acid, indicating the formation of retinoyl derivatives. Our results establish that RTE cells can convert all-trans-retinol to 13-cis-retinol and retinoic acid. RTE can metabolize all-trans-retinoic acid to 13-cis-retinoic acid and to an unidentified ester of retinoic acid.  相似文献   
9.
Studies on reconstituted mixtures of extensively purified cellobiohydrolases I and II and the five major endoglucanases of the fungus Penicillium pinophilum have provided some new information on the mechanism by which crystalline cellulose in the form of the cotton fibre is rendered soluble. It was observed that there was little or no synergistic activity either between purified cellobiohydrolases I and II, or, contrary to previous findings, between the individual cellobiohydrolases and the endoglucanases. Cotton fibre was degraded to a significant degree only when three enzymes were present in the reconstituted enzyme mixture: these were cellobiohydrolases I and II and some specific endoglucanases. The optimum ratio of the cellobiohydrolases was 1:1. Only a trace of endoglucanase activity was required to make the mixture of cellobiohydrolases I and II effective. The addition of cellobiohydrolases I and II individually to endoglucanases from other cellulolytic fungi resulted in little synergistic activity; however, a mixture of endoglucanases and both cellobiohydrolases was effective. It is suggested that current concepts of the mechanism of cellulase action may be the result of incompletely resolved complexes between cellobiohydrolase and endoglucanase activities. It was found that such complexes in filtrates of P. pinophilium or Trichoderma reesei were easily resolved using affinity chromatography on a column of p-aminobenzyl-1-thio-beta-D-cellobioside.  相似文献   
10.
Summary Cetyltrimethylammonium bromide-permeabilized cells ofK. fragilis loose -galactosidase activity due to leaking of the enzyme into the medium. This leakage of the enzyme can be prevented by storing the permeabilized cells either in buffer containing 50% glycerol or by treating the permeabilized cells with 0.2% glutaraldehyde at 4°C for 10 min. In repeated batch hydrolysis of lactose in milk, glutaraldehyde treated cells could be repeatedly used very efficiently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号