首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   22篇
  288篇
  2023年   2篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   9篇
  2015年   24篇
  2014年   12篇
  2013年   20篇
  2012年   20篇
  2011年   34篇
  2010年   14篇
  2009年   13篇
  2008年   9篇
  2007年   10篇
  2006年   6篇
  2005年   8篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1989年   2篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1977年   2篇
  1975年   2篇
  1972年   2篇
  1967年   1篇
  1965年   1篇
  1963年   2篇
  1961年   1篇
  1958年   1篇
排序方式: 共有288条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
Two Clostridium thermocellum strains were improved for ethanol tolerance, to 5% (v/v), by gradual adaptation and mutation. The best mutant gave an ethanol yield of 0.37 g/g substrate, with a growth yield 1.5 times more than its parent. Accumulation of acids and reducing sugars by the mutant strain with 5% (v/v) ethanol was lower than that of the parent strain with 1.5% (v/v) ethanol.  相似文献   
5.

The present study examined the anti-biofilm efficacy of two short-chain antimicrobial peptides (AMPs), namely, indolicidin and cecropin A (1-7)-melittin (CAMA) against biofilm-forming multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC) isolates. The typical EAEC isolates re-validated by PCR and confirmed using HEp-2 cell adherence assay was subjected to antibiotic susceptibility testing to confirm its MDR status. The biofilm-forming ability of MDR-EAEC isolates was assessed by Congo red binding, microtitre plate assays and hydrophobicity index; broth microdilution technique was employed to determine minimum inhibitory concentrations (MICs) and minimum biofilm eradication concentrations (MBECs). The obtained MIC and MBEC values for both AMPs were evaluated alone and in combination against MDR-EAEC biofilms using crystal violet (CV) staining and confocal microscopy-based live/dead cell quantification methods. All the three MDR-EAEC strains revealed weak to strong biofilm-forming ability and were found to be electron-donating and weakly electron-accepting (hydrophobicity index). Also, highly significant (P < 0.001) time-dependent hydrodynamic growth of the three MDR-EAEC strains was observed at 48 h of incubation in Dulbecco’s modified Eagle’s medium (DMEM) containing 0.45% D-glucose. AMPs and their combination were able to inhibit the initial biofilm formation at 24 h and 48 h as evidenced by CV staining and confocal quantification. Further, the application of AMPs (individually and combination) against the preformed MDR-EAEC biofilms resulted in highly significant eradication (P < 0.001) at 24 h post treatment. However, significant differences were not observed between AMP treatments (individually or in combination). The AMPs seem to be an effective candidates for further investigations such as safety, stability and appropriate biofilm-forming MDR-EAEC animal models.

  相似文献   
6.
Sebastian  Wilson  Sukumaran  Sandhya  Gopalakrishnan  A. 《Genetica》2021,149(3):191-201
Genetica - The vertebrate mitochondrial genome is characterized by an exceptional organization evolving towards a reduced size. However, the persistence of a non-coding and highly variable control...  相似文献   
7.
Abstract

Three mononuclear, mixed ligand ternary Cu(II) complexes of 3-((Z)-1-(2-hydroxyphenylimino)ethyl)-4-hydroxy-6-methyl-2H-pyran-2-one (HEHMP) viz; [Cu-(Phen) (HEHMP)] (1a), [Cu-(Bpy)(HEHMP)] (1?b) and [Cu-Bpy(NCS)(HEHMP)] (1c) were synthesized and characterized by data obtained from various spectral techniques. The binding affinities of these complexes with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) protein were explored by absorption and fluorescence quenching titrations. The results indicated strong affinity of the title compounds to bind with both CT-DNA and BSA. The antioxidant properties of the synthesized compounds evaluated by free-radical scavenging method using spectrophotometric technique indicated their affirmative potential activity. Gel electrophoresis experiments revealed the efficacy of metal complexes in resulting the cleavage of pBR322 supercoiled DNA. In vitro cytotoxicity studies of these complexes evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HeLa and MCF-7 cancer cell lines indicated relatively high effectiveness of the complex 1c. Confocal microscopy signified the potential of the complexes to induce apoptosis in HeLa cell lines. In addition, the antibacterial activity of the compounds carried out by disc diffusion method revealed significantly enhanced antibacterial activity in Cu (II) ternary complexes compared to the activity of ligands in unbound form signifying the implicit role of metal ion in inducing lipophilic character.  相似文献   
8.
Ceramides are potent bioactive molecules in cells. However, they are very hydrophobic molecules, and difficult to deliver efficiently to cells. We have made fluid bilayers from a short-chain D-erythro-ceramide (C6-Cer) and cholesteryl phosphocholine (CholPC), and have used this as a formulation to deliver ceramide to cells. C6-Cer complexed with CholPC led to much larger biological effects in cultured cells (rat thyroid FRTL-5 and human HeLa cells in culture) compared to C6-Cer dissolved in dimethyl sulfoxide (DMSO). Inhibition of cell proliferation and induction of apoptosis was significantly more efficient by C6-Cer/CholPC compared to C6-Cer dissolved in DMSO. C6-Cer/CholPC also permeated cell membranes and caused mitochondrial Ca2+ influx more efficiently than C6-Cer in DMSO. Even though CholPC was taken up by cells to some extent (from C6-Cer/CholPC bilayers), and was partially hydrolyzed to free cholesterol (about 9%), none of the antiproliferative effects were due to CholPC or excess cholesterol. The ceramide effect was not limited to D-erythro-C6-Cer, since L-erythro-C6-Cer and D-erythro-C6-dihydroCer also inhibited cell priolifereation and affected Ca2+ homeostasis. We conclude that C6-Cer complexed to CholPC increased the bioavailability of the short-chain ceramide for cells, and potentiated its effects in comparison to solvent-dissolved C6-Cer. This new ceramide formulation appears to be superior to previous solvent delivery approaches, and may even be useful with longer-chain ceramides.  相似文献   
9.
Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.  相似文献   
10.
A retrospective meta-modeling analysis was performed to integrate previously reported data of glucocorticoid (GC) effects on glucose regulation following a single intramuscular dose (50 mg/kg), single intravenous doses (10, 50 mg/kg), and intravenous infusions (0.1, 0.2, 0.3 and 0.4 mg/kg/h) of methylprednisolone (MPL) in normal and adrenalectomized (ADX) male Wistar rats. A mechanistic pharmacodynamic (PD) model was developed based on the receptor/gene/protein-mediated GC effects on glucose regulation. Three major target organs (liver, white adipose tissue and skeletal muscle) together with some selected intermediate controlling factors were designated as important regulators involved in the pathogenesis of GC-induced glucose dysregulation. Assessed were dynamic changes of food intake and systemic factors (plasma glucose, insulin, free fatty acids (FFA) and leptin) and tissue-specific biomarkers (cAMP, phosphoenolpyruvate carboxykinase (PEPCK) mRNA and enzyme activity, leptin mRNA, interleukin 6 receptor type 1 (IL6R1) mRNA and Insulin receptor substrate-1 (IRS-1) mRNA) after acute and chronic dosing with MPL along with the GC receptor (GR) dynamics in each target organ. Upon binding to GR in liver, MPL dosing caused increased glucose production by stimulating hepatic cAMP and PEPCK activity. In adipose tissue, the rise in leptin mRNA and plasma leptin caused reduction of food intake, the exogenous source of glucose input. Down-regulation of IRS-1 mRNA expression in skeletal muscle inhibited the stimulatory effect of insulin on glucose utilization further contributing to hyperglycemia. The nuclear drug-receptor complex served as the driving force for stimulation or inhibition of downstream target gene expression within different tissues. Incorporating information such as receptor dynamics, as well as the gene and protein induction, allowed us to describe the receptor-mediated effects of MPL on glucose regulation in each important tissue. This advanced mechanistic model provides unique insights into the contributions of major tissues and quantitative hypotheses for the multi-factor control of a complex metabolic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号